| Step |
Hyp |
Ref |
Expression |
| 1 |
|
maduf.a |
|
| 2 |
|
maduf.j |
|
| 3 |
|
maduf.b |
|
| 4 |
|
madugsum.d |
|
| 5 |
|
madugsum.t |
|
| 6 |
|
madugsum.k |
|
| 7 |
|
madugsum.m |
|
| 8 |
|
madugsum.r |
|
| 9 |
|
madugsum.x |
|
| 10 |
|
madugsum.l |
|
| 11 |
|
mpteq1 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
|
eleq2 |
|
| 14 |
13
|
ifbid |
|
| 15 |
14
|
ifeq1d |
|
| 16 |
15
|
mpoeq3dv |
|
| 17 |
16
|
fveq2d |
|
| 18 |
12 17
|
eqeq12d |
|
| 19 |
|
mpteq1 |
|
| 20 |
19
|
oveq2d |
|
| 21 |
|
eleq2 |
|
| 22 |
21
|
ifbid |
|
| 23 |
22
|
ifeq1d |
|
| 24 |
23
|
mpoeq3dv |
|
| 25 |
24
|
fveq2d |
|
| 26 |
20 25
|
eqeq12d |
|
| 27 |
|
mpteq1 |
|
| 28 |
27
|
oveq2d |
|
| 29 |
|
eleq2 |
|
| 30 |
29
|
ifbid |
|
| 31 |
30
|
ifeq1d |
|
| 32 |
31
|
mpoeq3dv |
|
| 33 |
32
|
fveq2d |
|
| 34 |
28 33
|
eqeq12d |
|
| 35 |
|
mpteq1 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
eleq2 |
|
| 38 |
37
|
ifbid |
|
| 39 |
38
|
ifeq1d |
|
| 40 |
39
|
mpoeq3dv |
|
| 41 |
40
|
fveq2d |
|
| 42 |
36 41
|
eqeq12d |
|
| 43 |
|
mpt0 |
|
| 44 |
43
|
oveq2i |
|
| 45 |
|
eqid |
|
| 46 |
45
|
gsum0 |
|
| 47 |
44 46
|
eqtri |
|
| 48 |
|
noel |
|
| 49 |
|
iffalse |
|
| 50 |
48 49
|
mp1i |
|
| 51 |
50
|
ifeq1d |
|
| 52 |
51
|
mpoeq3ia |
|
| 53 |
52
|
fveq2i |
|
| 54 |
1 3
|
matrcl |
|
| 55 |
7 54
|
syl |
|
| 56 |
55
|
simpld |
|
| 57 |
1 6 3
|
matbas2i |
|
| 58 |
|
elmapi |
|
| 59 |
7 57 58
|
3syl |
|
| 60 |
59
|
fovcdmda |
|
| 61 |
60
|
3impb |
|
| 62 |
4 6 45 8 56 61 10
|
mdetr0 |
|
| 63 |
53 62
|
eqtrid |
|
| 64 |
47 63
|
eqtr4id |
|
| 65 |
|
eqid |
|
| 66 |
8
|
adantr |
|
| 67 |
|
crngring |
|
| 68 |
66 67
|
syl |
|
| 69 |
|
ringcmn |
|
| 70 |
68 69
|
syl |
|
| 71 |
56
|
adantr |
|
| 72 |
|
simprl |
|
| 73 |
71 72
|
ssfid |
|
| 74 |
68
|
adantr |
|
| 75 |
72
|
sselda |
|
| 76 |
9
|
ralrimiva |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
|
rspcsbela |
|
| 79 |
75 77 78
|
syl2anc |
|
| 80 |
1 2 3
|
maduf |
|
| 81 |
8 80
|
syl |
|
| 82 |
81 7
|
ffvelcdmd |
|
| 83 |
1 6 3
|
matbas2i |
|
| 84 |
|
elmapi |
|
| 85 |
82 83 84
|
3syl |
|
| 86 |
85
|
ad2antrr |
|
| 87 |
10
|
ad2antrr |
|
| 88 |
86 75 87
|
fovcdmd |
|
| 89 |
6 5
|
ringcl |
|
| 90 |
74 79 88 89
|
syl3anc |
|
| 91 |
|
vex |
|
| 92 |
91
|
a1i |
|
| 93 |
|
eldifn |
|
| 94 |
93
|
ad2antll |
|
| 95 |
|
eldifi |
|
| 96 |
95
|
ad2antll |
|
| 97 |
76
|
adantr |
|
| 98 |
|
rspcsbela |
|
| 99 |
96 97 98
|
syl2anc |
|
| 100 |
85
|
adantr |
|
| 101 |
10
|
adantr |
|
| 102 |
100 96 101
|
fovcdmd |
|
| 103 |
6 5
|
ringcl |
|
| 104 |
68 99 102 103
|
syl3anc |
|
| 105 |
|
csbeq1 |
|
| 106 |
|
oveq1 |
|
| 107 |
105 106
|
oveq12d |
|
| 108 |
6 65 70 73 90 92 94 104 107
|
gsumunsn |
|
| 109 |
108
|
adantr |
|
| 110 |
|
oveq1 |
|
| 111 |
110
|
adantl |
|
| 112 |
|
elun |
|
| 113 |
|
velsn |
|
| 114 |
113
|
orbi2i |
|
| 115 |
112 114
|
bitri |
|
| 116 |
|
ifbi |
|
| 117 |
115 116
|
ax-mp |
|
| 118 |
|
ringmnd |
|
| 119 |
68 118
|
syl |
|
| 120 |
119
|
3ad2ant1 |
|
| 121 |
|
simp3 |
|
| 122 |
97
|
3ad2ant1 |
|
| 123 |
121 122 78
|
syl2anc |
|
| 124 |
|
elequ1 |
|
| 125 |
124
|
biimpac |
|
| 126 |
94 125
|
nsyl |
|
| 127 |
126
|
3ad2ant1 |
|
| 128 |
6 45 65
|
mndifsplit |
|
| 129 |
120 123 127 128
|
syl3anc |
|
| 130 |
117 129
|
eqtrid |
|
| 131 |
105
|
adantl |
|
| 132 |
131
|
ifeq1da |
|
| 133 |
|
ovif2 |
|
| 134 |
|
eqid |
|
| 135 |
6 5 134
|
ringridm |
|
| 136 |
68 99 135
|
syl2anc |
|
| 137 |
6 5 45
|
ringrz |
|
| 138 |
68 99 137
|
syl2anc |
|
| 139 |
136 138
|
ifeq12d |
|
| 140 |
133 139
|
eqtrid |
|
| 141 |
132 140
|
eqtr4d |
|
| 142 |
141
|
oveq2d |
|
| 143 |
142
|
3ad2ant1 |
|
| 144 |
130 143
|
eqtrd |
|
| 145 |
144
|
ifeq1d |
|
| 146 |
145
|
mpoeq3dva |
|
| 147 |
146
|
fveq2d |
|
| 148 |
6 45
|
ring0cl |
|
| 149 |
68 148
|
syl |
|
| 150 |
149
|
3ad2ant1 |
|
| 151 |
123 150
|
ifcld |
|
| 152 |
6 134
|
ringidcl |
|
| 153 |
68 152
|
syl |
|
| 154 |
153 149
|
ifcld |
|
| 155 |
6 5
|
ringcl |
|
| 156 |
68 99 154 155
|
syl3anc |
|
| 157 |
156
|
3ad2ant1 |
|
| 158 |
59
|
adantr |
|
| 159 |
158
|
fovcdmda |
|
| 160 |
159
|
3impb |
|
| 161 |
4 6 65 66 71 151 157 160 101
|
mdetrlin2 |
|
| 162 |
154
|
3ad2ant1 |
|
| 163 |
4 6 5 66 71 162 160 99 101
|
mdetrsca2 |
|
| 164 |
7
|
adantr |
|
| 165 |
1 4 2 3 134 45
|
maducoeval |
|
| 166 |
164 96 101 165
|
syl3anc |
|
| 167 |
166
|
oveq2d |
|
| 168 |
163 167
|
eqtr4d |
|
| 169 |
168
|
oveq2d |
|
| 170 |
147 161 169
|
3eqtrrd |
|
| 171 |
170
|
adantr |
|
| 172 |
109 111 171
|
3eqtrd |
|
| 173 |
172
|
ex |
|
| 174 |
18 26 34 42 64 173 56
|
findcard2d |
|
| 175 |
|
nfcv |
|
| 176 |
|
nfcsb1v |
|
| 177 |
|
nfcv |
|
| 178 |
|
nfcv |
|
| 179 |
176 177 178
|
nfov |
|
| 180 |
|
csbeq1a |
|
| 181 |
|
oveq1 |
|
| 182 |
180 181
|
oveq12d |
|
| 183 |
175 179 182
|
cbvmpt |
|
| 184 |
183
|
oveq2i |
|
| 185 |
|
nfcv |
|
| 186 |
|
nfcv |
|
| 187 |
|
nfcv |
|
| 188 |
|
nfv |
|
| 189 |
|
nfcv |
|
| 190 |
188 176 189
|
nfif |
|
| 191 |
|
eqeq1 |
|
| 192 |
191
|
adantr |
|
| 193 |
180
|
adantl |
|
| 194 |
|
oveq12 |
|
| 195 |
192 193 194
|
ifbieq12d |
|
| 196 |
185 186 187 190 195
|
cbvmpo |
|
| 197 |
|
iftrue |
|
| 198 |
197
|
eqcomd |
|
| 199 |
198
|
adantl |
|
| 200 |
199
|
ifeq1d |
|
| 201 |
200
|
mpoeq3ia |
|
| 202 |
196 201
|
eqtri |
|
| 203 |
202
|
fveq2i |
|
| 204 |
174 184 203
|
3eqtr4g |
|