Metamath Proof Explorer


Theorem maducoeval

Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018)

Ref Expression
Hypotheses madufval.a A=NMatR
madufval.d D=NmaDetR
madufval.j J=NmaAdjuR
madufval.b B=BaseA
madufval.o 1˙=1R
madufval.z 0˙=0R
Assertion maducoeval MBINHNIJMH=DkN,lNifk=Hifl=I1˙0˙kMl

Proof

Step Hyp Ref Expression
1 madufval.a A=NMatR
2 madufval.d D=NmaDetR
3 madufval.j J=NmaAdjuR
4 madufval.b B=BaseA
5 madufval.o 1˙=1R
6 madufval.z 0˙=0R
7 1 2 3 4 5 6 maduval MBJM=iN,jNDkN,lNifk=jifl=i1˙0˙kMl
8 7 3ad2ant1 MBINHNJM=iN,jNDkN,lNifk=jifl=i1˙0˙kMl
9 simp1r i=Ij=HkNlNj=H
10 9 eqeq2d i=Ij=HkNlNk=jk=H
11 simp1l i=Ij=HkNlNi=I
12 11 eqeq2d i=Ij=HkNlNl=il=I
13 12 ifbid i=Ij=HkNlNifl=i1˙0˙=ifl=I1˙0˙
14 10 13 ifbieq1d i=Ij=HkNlNifk=jifl=i1˙0˙kMl=ifk=Hifl=I1˙0˙kMl
15 14 mpoeq3dva i=Ij=HkN,lNifk=jifl=i1˙0˙kMl=kN,lNifk=Hifl=I1˙0˙kMl
16 15 fveq2d i=Ij=HDkN,lNifk=jifl=i1˙0˙kMl=DkN,lNifk=Hifl=I1˙0˙kMl
17 16 adantl MBINHNi=Ij=HDkN,lNifk=jifl=i1˙0˙kMl=DkN,lNifk=Hifl=I1˙0˙kMl
18 simp2 MBINHNIN
19 simp3 MBINHNHN
20 fvexd MBINHNDkN,lNifk=Hifl=I1˙0˙kMlV
21 8 17 18 19 20 ovmpod MBINHNIJMH=DkN,lNifk=Hifl=I1˙0˙kMl