Metamath Proof Explorer


Theorem maducoeval

Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018)

Ref Expression
Hypotheses madufval.a A = N Mat R
madufval.d D = N maDet R
madufval.j J = N maAdju R
madufval.b B = Base A
madufval.o 1 ˙ = 1 R
madufval.z 0 ˙ = 0 R
Assertion maducoeval M B I N H N I J M H = D k N , l N if k = H if l = I 1 ˙ 0 ˙ k M l

Proof

Step Hyp Ref Expression
1 madufval.a A = N Mat R
2 madufval.d D = N maDet R
3 madufval.j J = N maAdju R
4 madufval.b B = Base A
5 madufval.o 1 ˙ = 1 R
6 madufval.z 0 ˙ = 0 R
7 1 2 3 4 5 6 maduval M B J M = i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l
8 7 3ad2ant1 M B I N H N J M = i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l
9 simp1r i = I j = H k N l N j = H
10 9 eqeq2d i = I j = H k N l N k = j k = H
11 simp1l i = I j = H k N l N i = I
12 11 eqeq2d i = I j = H k N l N l = i l = I
13 12 ifbid i = I j = H k N l N if l = i 1 ˙ 0 ˙ = if l = I 1 ˙ 0 ˙
14 10 13 ifbieq1d i = I j = H k N l N if k = j if l = i 1 ˙ 0 ˙ k M l = if k = H if l = I 1 ˙ 0 ˙ k M l
15 14 mpoeq3dva i = I j = H k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l = k N , l N if k = H if l = I 1 ˙ 0 ˙ k M l
16 15 fveq2d i = I j = H D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l = D k N , l N if k = H if l = I 1 ˙ 0 ˙ k M l
17 16 adantl M B I N H N i = I j = H D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l = D k N , l N if k = H if l = I 1 ˙ 0 ˙ k M l
18 simp2 M B I N H N I N
19 simp3 M B I N H N H N
20 fvexd M B I N H N D k N , l N if k = H if l = I 1 ˙ 0 ˙ k M l V
21 8 17 18 19 20 ovmpod M B I N H N I J M H = D k N , l N if k = H if l = I 1 ˙ 0 ˙ k M l