Metamath Proof Explorer


Theorem ovif2

Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018)

Ref Expression
Assertion ovif2 AFifφBC=ifφAFBAFC

Proof

Step Hyp Ref Expression
1 oveq2 ifφBC=BAFifφBC=AFB
2 oveq2 ifφBC=CAFifφBC=AFC
3 1 2 ifsb AFifφBC=ifφAFBAFC