| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cramer.a |
|
| 2 |
|
cramer.b |
|
| 3 |
|
cramer.v |
|
| 4 |
|
cramer.d |
|
| 5 |
|
cramer.x |
|
| 6 |
|
cramer.q |
|
| 7 |
1
|
fveq2i |
|
| 8 |
2 7
|
eqtri |
|
| 9 |
|
fvoveq1 |
|
| 10 |
8 9
|
eqtrid |
|
| 11 |
10
|
adantr |
|
| 12 |
11
|
eleq2d |
|
| 13 |
|
mat0dimbas0 |
|
| 14 |
13
|
eleq2d |
|
| 15 |
14
|
adantl |
|
| 16 |
12 15
|
bitrd |
|
| 17 |
3
|
a1i |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
adantr |
|
| 20 |
|
fvex |
|
| 21 |
|
map0e |
|
| 22 |
20 21
|
mp1i |
|
| 23 |
17 19 22
|
3eqtrd |
|
| 24 |
23
|
eleq2d |
|
| 25 |
|
el1o |
|
| 26 |
24 25
|
bitrdi |
|
| 27 |
16 26
|
anbi12d |
|
| 28 |
|
elsni |
|
| 29 |
|
mpteq1 |
|
| 30 |
|
mpt0 |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
31
|
eqeq2d |
|
| 33 |
32
|
ad2antrr |
|
| 34 |
|
simplrl |
|
| 35 |
|
simpr |
|
| 36 |
34 35
|
oveq12d |
|
| 37 |
5
|
mavmul0 |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
|
simpr |
|
| 40 |
39
|
eqcomd |
|
| 41 |
40
|
ad2antlr |
|
| 42 |
36 38 41
|
3eqtrd |
|
| 43 |
42
|
ex |
|
| 44 |
33 43
|
sylbid |
|
| 45 |
44
|
a1d |
|
| 46 |
45
|
ex |
|
| 47 |
28 46
|
sylani |
|
| 48 |
27 47
|
sylbid |
|
| 49 |
48
|
3imp |
|