Step |
Hyp |
Ref |
Expression |
1 |
|
cramer.a |
|
2 |
|
cramer.b |
|
3 |
|
cramer.v |
|
4 |
|
cramer.d |
|
5 |
|
cramer.x |
|
6 |
|
cramer.q |
|
7 |
1
|
fveq2i |
|
8 |
2 7
|
eqtri |
|
9 |
|
fvoveq1 |
|
10 |
8 9
|
eqtrid |
|
11 |
10
|
adantr |
|
12 |
11
|
eleq2d |
|
13 |
|
mat0dimbas0 |
|
14 |
13
|
eleq2d |
|
15 |
14
|
adantl |
|
16 |
12 15
|
bitrd |
|
17 |
3
|
a1i |
|
18 |
|
oveq2 |
|
19 |
18
|
adantr |
|
20 |
|
fvex |
|
21 |
|
map0e |
|
22 |
20 21
|
mp1i |
|
23 |
17 19 22
|
3eqtrd |
|
24 |
23
|
eleq2d |
|
25 |
|
el1o |
|
26 |
24 25
|
bitrdi |
|
27 |
16 26
|
anbi12d |
|
28 |
|
elsni |
|
29 |
|
mpteq1 |
|
30 |
|
mpt0 |
|
31 |
29 30
|
eqtrdi |
|
32 |
31
|
eqeq2d |
|
33 |
32
|
ad2antrr |
|
34 |
|
simplrl |
|
35 |
|
simpr |
|
36 |
34 35
|
oveq12d |
|
37 |
5
|
mavmul0 |
|
38 |
37
|
ad2antrr |
|
39 |
|
simpr |
|
40 |
39
|
eqcomd |
|
41 |
40
|
ad2antlr |
|
42 |
36 38 41
|
3eqtrd |
|
43 |
42
|
ex |
|
44 |
33 43
|
sylbid |
|
45 |
44
|
a1d |
|
46 |
45
|
ex |
|
47 |
28 46
|
sylani |
|
48 |
27 47
|
sylbid |
|
49 |
48
|
3imp |
|