Metamath Proof Explorer


Theorem cramer0

Description: Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019)

Ref Expression
Hypotheses cramer.a A=NMatR
cramer.b B=BaseA
cramer.v V=BaseRN
cramer.d D=NmaDetR
cramer.x ·˙=RmaVecMulNN
cramer.q ×˙=/rR
Assertion cramer0 N=RCRingXBYVDXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y

Proof

Step Hyp Ref Expression
1 cramer.a A=NMatR
2 cramer.b B=BaseA
3 cramer.v V=BaseRN
4 cramer.d D=NmaDetR
5 cramer.x ·˙=RmaVecMulNN
6 cramer.q ×˙=/rR
7 1 fveq2i BaseA=BaseNMatR
8 2 7 eqtri B=BaseNMatR
9 fvoveq1 N=BaseNMatR=BaseMatR
10 8 9 eqtrid N=B=BaseMatR
11 10 adantr N=RCRingB=BaseMatR
12 11 eleq2d N=RCRingXBXBaseMatR
13 mat0dimbas0 RCRingBaseMatR=
14 13 eleq2d RCRingXBaseMatRX
15 14 adantl N=RCRingXBaseMatRX
16 12 15 bitrd N=RCRingXBX
17 3 a1i N=RCRingV=BaseRN
18 oveq2 N=BaseRN=BaseR
19 18 adantr N=RCRingBaseRN=BaseR
20 fvex BaseRV
21 map0e BaseRVBaseR=1𝑜
22 20 21 mp1i N=RCRingBaseR=1𝑜
23 17 19 22 3eqtrd N=RCRingV=1𝑜
24 23 eleq2d N=RCRingYVY1𝑜
25 el1o Y1𝑜Y=
26 24 25 bitrdi N=RCRingYVY=
27 16 26 anbi12d N=RCRingXBYVXY=
28 elsni XX=
29 mpteq1 N=iNDXNmatRepVRYi×˙DX=iDXNmatRepVRYi×˙DX
30 mpt0 iDXNmatRepVRYi×˙DX=
31 29 30 eqtrdi N=iNDXNmatRepVRYi×˙DX=
32 31 eqeq2d N=Z=iNDXNmatRepVRYi×˙DXZ=
33 32 ad2antrr N=RCRingX=Y=Z=iNDXNmatRepVRYi×˙DXZ=
34 simplrl N=RCRingX=Y=Z=X=
35 simpr N=RCRingX=Y=Z=Z=
36 34 35 oveq12d N=RCRingX=Y=Z=X·˙Z=·˙
37 5 mavmul0 N=RCRing·˙=
38 37 ad2antrr N=RCRingX=Y=Z=·˙=
39 simpr X=Y=Y=
40 39 eqcomd X=Y==Y
41 40 ad2antlr N=RCRingX=Y=Z==Y
42 36 38 41 3eqtrd N=RCRingX=Y=Z=X·˙Z=Y
43 42 ex N=RCRingX=Y=Z=X·˙Z=Y
44 33 43 sylbid N=RCRingX=Y=Z=iNDXNmatRepVRYi×˙DXX·˙Z=Y
45 44 a1d N=RCRingX=Y=DXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
46 45 ex N=RCRingX=Y=DXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
47 28 46 sylani N=RCRingXY=DXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
48 27 47 sylbid N=RCRingXBYVDXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y
49 48 3imp N=RCRingXBYVDXUnitRZ=iNDXNmatRepVRYi×˙DXX·˙Z=Y