| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetuni.a |
|
| 2 |
|
mdetuni.b |
|
| 3 |
|
mdetuni.k |
|
| 4 |
|
mdetuni.0g |
|
| 5 |
|
mdetuni.1r |
|
| 6 |
|
mdetuni.pg |
|
| 7 |
|
mdetuni.tg |
|
| 8 |
|
mdetuni.n |
|
| 9 |
|
mdetuni.r |
|
| 10 |
|
mdetuni.ff |
|
| 11 |
|
mdetuni.al |
|
| 12 |
|
mdetuni.li |
|
| 13 |
|
mdetuni.sc |
|
| 14 |
|
simp23 |
|
| 15 |
|
simp3l |
|
| 16 |
|
simp3r |
|
| 17 |
|
simprl |
|
| 18 |
|
simprr |
|
| 19 |
|
simpl2 |
|
| 20 |
|
simpl3 |
|
| 21 |
|
simpl1 |
|
| 22 |
21 12
|
syl |
|
| 23 |
|
reseq1 |
|
| 24 |
23
|
eqeq1d |
|
| 25 |
|
reseq1 |
|
| 26 |
25
|
eqeq1d |
|
| 27 |
25
|
eqeq1d |
|
| 28 |
24 26 27
|
3anbi123d |
|
| 29 |
|
fveq2 |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
28 30
|
imbi12d |
|
| 32 |
31
|
2ralbidv |
|
| 33 |
|
reseq1 |
|
| 34 |
33
|
oveq1d |
|
| 35 |
34
|
eqeq2d |
|
| 36 |
|
reseq1 |
|
| 37 |
36
|
eqeq2d |
|
| 38 |
35 37
|
3anbi12d |
|
| 39 |
|
fveq2 |
|
| 40 |
39
|
oveq1d |
|
| 41 |
40
|
eqeq2d |
|
| 42 |
38 41
|
imbi12d |
|
| 43 |
42
|
2ralbidv |
|
| 44 |
32 43
|
rspc2va |
|
| 45 |
19 20 22 44
|
syl21anc |
|
| 46 |
|
reseq1 |
|
| 47 |
46
|
oveq2d |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
|
reseq1 |
|
| 50 |
49
|
eqeq2d |
|
| 51 |
48 50
|
3anbi13d |
|
| 52 |
|
fveq2 |
|
| 53 |
52
|
oveq2d |
|
| 54 |
53
|
eqeq2d |
|
| 55 |
51 54
|
imbi12d |
|
| 56 |
|
sneq |
|
| 57 |
56
|
xpeq1d |
|
| 58 |
57
|
reseq2d |
|
| 59 |
57
|
reseq2d |
|
| 60 |
57
|
reseq2d |
|
| 61 |
59 60
|
oveq12d |
|
| 62 |
58 61
|
eqeq12d |
|
| 63 |
56
|
difeq2d |
|
| 64 |
63
|
xpeq1d |
|
| 65 |
64
|
reseq2d |
|
| 66 |
64
|
reseq2d |
|
| 67 |
65 66
|
eqeq12d |
|
| 68 |
64
|
reseq2d |
|
| 69 |
65 68
|
eqeq12d |
|
| 70 |
62 67 69
|
3anbi123d |
|
| 71 |
70
|
imbi1d |
|
| 72 |
55 71
|
rspc2va |
|
| 73 |
17 18 45 72
|
syl21anc |
|
| 74 |
73
|
3adantr3 |
|
| 75 |
74
|
3adant3 |
|
| 76 |
14 15 16 75
|
mp3and |
|