Metamath Proof Explorer


Theorem mdetunilem3

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A=NMatR
mdetuni.b B=BaseA
mdetuni.k K=BaseR
mdetuni.0g 0˙=0R
mdetuni.1r 1˙=1R
mdetuni.pg +˙=+R
mdetuni.tg ·˙=R
mdetuni.n φNFin
mdetuni.r φRRing
mdetuni.ff φD:BK
mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
Assertion mdetunilem3 φEBFBGBHNEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NDE=DF+˙DG

Proof

Step Hyp Ref Expression
1 mdetuni.a A=NMatR
2 mdetuni.b B=BaseA
3 mdetuni.k K=BaseR
4 mdetuni.0g 0˙=0R
5 mdetuni.1r 1˙=1R
6 mdetuni.pg +˙=+R
7 mdetuni.tg ·˙=R
8 mdetuni.n φNFin
9 mdetuni.r φRRing
10 mdetuni.ff φD:BK
11 mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
12 mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
13 mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
14 simp23 φEBFBGBHNEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NEH×N=FH×N+˙fGH×N
15 simp3l φEBFBGBHNEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NENH×N=FNH×N
16 simp3r φEBFBGBHNEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NENH×N=GNH×N
17 simprl φEBFBGBHNGB
18 simprr φEBFBGBHNHN
19 simpl2 φEBFBGBHNEB
20 simpl3 φEBFBGBHNFB
21 simpl1 φEBFBGBHNφ
22 21 12 syl φEBFBGBHNxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
23 reseq1 x=Exw×N=Ew×N
24 23 eqeq1d x=Exw×N=yw×N+˙fzw×NEw×N=yw×N+˙fzw×N
25 reseq1 x=ExNw×N=ENw×N
26 25 eqeq1d x=ExNw×N=yNw×NENw×N=yNw×N
27 25 eqeq1d x=ExNw×N=zNw×NENw×N=zNw×N
28 24 26 27 3anbi123d x=Exw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NEw×N=yw×N+˙fzw×NENw×N=yNw×NENw×N=zNw×N
29 fveq2 x=EDx=DE
30 29 eqeq1d x=EDx=Dy+˙DzDE=Dy+˙Dz
31 28 30 imbi12d x=Exw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙DzEw×N=yw×N+˙fzw×NENw×N=yNw×NENw×N=zNw×NDE=Dy+˙Dz
32 31 2ralbidv x=EzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙DzzBwNEw×N=yw×N+˙fzw×NENw×N=yNw×NENw×N=zNw×NDE=Dy+˙Dz
33 reseq1 y=Fyw×N=Fw×N
34 33 oveq1d y=Fyw×N+˙fzw×N=Fw×N+˙fzw×N
35 34 eqeq2d y=FEw×N=yw×N+˙fzw×NEw×N=Fw×N+˙fzw×N
36 reseq1 y=FyNw×N=FNw×N
37 36 eqeq2d y=FENw×N=yNw×NENw×N=FNw×N
38 35 37 3anbi12d y=FEw×N=yw×N+˙fzw×NENw×N=yNw×NENw×N=zNw×NEw×N=Fw×N+˙fzw×NENw×N=FNw×NENw×N=zNw×N
39 fveq2 y=FDy=DF
40 39 oveq1d y=FDy+˙Dz=DF+˙Dz
41 40 eqeq2d y=FDE=Dy+˙DzDE=DF+˙Dz
42 38 41 imbi12d y=FEw×N=yw×N+˙fzw×NENw×N=yNw×NENw×N=zNw×NDE=Dy+˙DzEw×N=Fw×N+˙fzw×NENw×N=FNw×NENw×N=zNw×NDE=DF+˙Dz
43 42 2ralbidv y=FzBwNEw×N=yw×N+˙fzw×NENw×N=yNw×NENw×N=zNw×NDE=Dy+˙DzzBwNEw×N=Fw×N+˙fzw×NENw×N=FNw×NENw×N=zNw×NDE=DF+˙Dz
44 32 43 rspc2va EBFBxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙DzzBwNEw×N=Fw×N+˙fzw×NENw×N=FNw×NENw×N=zNw×NDE=DF+˙Dz
45 19 20 22 44 syl21anc φEBFBGBHNzBwNEw×N=Fw×N+˙fzw×NENw×N=FNw×NENw×N=zNw×NDE=DF+˙Dz
46 reseq1 z=Gzw×N=Gw×N
47 46 oveq2d z=GFw×N+˙fzw×N=Fw×N+˙fGw×N
48 47 eqeq2d z=GEw×N=Fw×N+˙fzw×NEw×N=Fw×N+˙fGw×N
49 reseq1 z=GzNw×N=GNw×N
50 49 eqeq2d z=GENw×N=zNw×NENw×N=GNw×N
51 48 50 3anbi13d z=GEw×N=Fw×N+˙fzw×NENw×N=FNw×NENw×N=zNw×NEw×N=Fw×N+˙fGw×NENw×N=FNw×NENw×N=GNw×N
52 fveq2 z=GDz=DG
53 52 oveq2d z=GDF+˙Dz=DF+˙DG
54 53 eqeq2d z=GDE=DF+˙DzDE=DF+˙DG
55 51 54 imbi12d z=GEw×N=Fw×N+˙fzw×NENw×N=FNw×NENw×N=zNw×NDE=DF+˙DzEw×N=Fw×N+˙fGw×NENw×N=FNw×NENw×N=GNw×NDE=DF+˙DG
56 sneq w=Hw=H
57 56 xpeq1d w=Hw×N=H×N
58 57 reseq2d w=HEw×N=EH×N
59 57 reseq2d w=HFw×N=FH×N
60 57 reseq2d w=HGw×N=GH×N
61 59 60 oveq12d w=HFw×N+˙fGw×N=FH×N+˙fGH×N
62 58 61 eqeq12d w=HEw×N=Fw×N+˙fGw×NEH×N=FH×N+˙fGH×N
63 56 difeq2d w=HNw=NH
64 63 xpeq1d w=HNw×N=NH×N
65 64 reseq2d w=HENw×N=ENH×N
66 64 reseq2d w=HFNw×N=FNH×N
67 65 66 eqeq12d w=HENw×N=FNw×NENH×N=FNH×N
68 64 reseq2d w=HGNw×N=GNH×N
69 65 68 eqeq12d w=HENw×N=GNw×NENH×N=GNH×N
70 62 67 69 3anbi123d w=HEw×N=Fw×N+˙fGw×NENw×N=FNw×NENw×N=GNw×NEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×N
71 70 imbi1d w=HEw×N=Fw×N+˙fGw×NENw×N=FNw×NENw×N=GNw×NDE=DF+˙DGEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NDE=DF+˙DG
72 55 71 rspc2va GBHNzBwNEw×N=Fw×N+˙fzw×NENw×N=FNw×NENw×N=zNw×NDE=DF+˙DzEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NDE=DF+˙DG
73 17 18 45 72 syl21anc φEBFBGBHNEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NDE=DF+˙DG
74 73 3adantr3 φEBFBGBHNEH×N=FH×N+˙fGH×NEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NDE=DF+˙DG
75 74 3adant3 φEBFBGBHNEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NDE=DF+˙DG
76 14 15 16 75 mp3and φEBFBGBHNEH×N=FH×N+˙fGH×NENH×N=FNH×NENH×N=GNH×NDE=DF+˙DG