| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetuni.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mdetuni.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | mdetuni.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | mdetuni.0g |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | mdetuni.1r |  |-  .1. = ( 1r ` R ) | 
						
							| 6 |  | mdetuni.pg |  |-  .+ = ( +g ` R ) | 
						
							| 7 |  | mdetuni.tg |  |-  .x. = ( .r ` R ) | 
						
							| 8 |  | mdetuni.n |  |-  ( ph -> N e. Fin ) | 
						
							| 9 |  | mdetuni.r |  |-  ( ph -> R e. Ring ) | 
						
							| 10 |  | mdetuni.ff |  |-  ( ph -> D : B --> K ) | 
						
							| 11 |  | mdetuni.al |  |-  ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) | 
						
							| 12 |  | mdetuni.li |  |-  ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) | 
						
							| 13 |  | mdetuni.sc |  |-  ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) | 
						
							| 14 |  | simp23 |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N /\ ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) ) /\ ( ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) ) | 
						
							| 15 |  | simp3l |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N /\ ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) ) /\ ( ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) ) | 
						
							| 16 |  | simp3r |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N /\ ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) ) /\ ( ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) | 
						
							| 17 |  | simprl |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N ) ) -> G e. B ) | 
						
							| 18 |  | simprr |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N ) ) -> H e. N ) | 
						
							| 19 |  | simpl2 |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N ) ) -> E e. B ) | 
						
							| 20 |  | simpl3 |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N ) ) -> F e. B ) | 
						
							| 21 |  | simpl1 |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N ) ) -> ph ) | 
						
							| 22 | 21 12 | syl |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N ) ) -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) | 
						
							| 23 |  | reseq1 |  |-  ( x = E -> ( x |` ( { w } X. N ) ) = ( E |` ( { w } X. N ) ) ) | 
						
							| 24 | 23 | eqeq1d |  |-  ( x = E -> ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) <-> ( E |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) ) ) | 
						
							| 25 |  | reseq1 |  |-  ( x = E -> ( x |` ( ( N \ { w } ) X. N ) ) = ( E |` ( ( N \ { w } ) X. N ) ) ) | 
						
							| 26 | 25 | eqeq1d |  |-  ( x = E -> ( ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) ) ) | 
						
							| 27 | 25 | eqeq1d |  |-  ( x = E -> ( ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) | 
						
							| 28 | 24 26 27 | 3anbi123d |  |-  ( x = E -> ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) | 
						
							| 29 |  | fveq2 |  |-  ( x = E -> ( D ` x ) = ( D ` E ) ) | 
						
							| 30 | 29 | eqeq1d |  |-  ( x = E -> ( ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) <-> ( D ` E ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) | 
						
							| 31 | 28 30 | imbi12d |  |-  ( x = E -> ( ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) <-> ( ( ( E |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) ) | 
						
							| 32 | 31 | 2ralbidv |  |-  ( x = E -> ( A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) ) | 
						
							| 33 |  | reseq1 |  |-  ( y = F -> ( y |` ( { w } X. N ) ) = ( F |` ( { w } X. N ) ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( y = F -> ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) ) | 
						
							| 35 | 34 | eqeq2d |  |-  ( y = F -> ( ( E |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) <-> ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) ) ) | 
						
							| 36 |  | reseq1 |  |-  ( y = F -> ( y |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) ) | 
						
							| 37 | 36 | eqeq2d |  |-  ( y = F -> ( ( E |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) ) ) | 
						
							| 38 | 35 37 | 3anbi12d |  |-  ( y = F -> ( ( ( E |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) | 
						
							| 39 |  | fveq2 |  |-  ( y = F -> ( D ` y ) = ( D ` F ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( y = F -> ( ( D ` y ) .+ ( D ` z ) ) = ( ( D ` F ) .+ ( D ` z ) ) ) | 
						
							| 41 | 40 | eqeq2d |  |-  ( y = F -> ( ( D ` E ) = ( ( D ` y ) .+ ( D ` z ) ) <-> ( D ` E ) = ( ( D ` F ) .+ ( D ` z ) ) ) ) | 
						
							| 42 | 38 41 | imbi12d |  |-  ( y = F -> ( ( ( ( E |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` y ) .+ ( D ` z ) ) ) <-> ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` z ) ) ) ) ) | 
						
							| 43 | 42 | 2ralbidv |  |-  ( y = F -> ( A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` y ) .+ ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` z ) ) ) ) ) | 
						
							| 44 | 32 43 | rspc2va |  |-  ( ( ( E e. B /\ F e. B ) /\ A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) -> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` z ) ) ) ) | 
						
							| 45 | 19 20 22 44 | syl21anc |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N ) ) -> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` z ) ) ) ) | 
						
							| 46 |  | reseq1 |  |-  ( z = G -> ( z |` ( { w } X. N ) ) = ( G |` ( { w } X. N ) ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( z = G -> ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( G |` ( { w } X. N ) ) ) ) | 
						
							| 48 | 47 | eqeq2d |  |-  ( z = G -> ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) <-> ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( G |` ( { w } X. N ) ) ) ) ) | 
						
							| 49 |  | reseq1 |  |-  ( z = G -> ( z |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) | 
						
							| 50 | 49 | eqeq2d |  |-  ( z = G -> ( ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) ) | 
						
							| 51 | 48 50 | 3anbi13d |  |-  ( z = G -> ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) ) ) | 
						
							| 52 |  | fveq2 |  |-  ( z = G -> ( D ` z ) = ( D ` G ) ) | 
						
							| 53 | 52 | oveq2d |  |-  ( z = G -> ( ( D ` F ) .+ ( D ` z ) ) = ( ( D ` F ) .+ ( D ` G ) ) ) | 
						
							| 54 | 53 | eqeq2d |  |-  ( z = G -> ( ( D ` E ) = ( ( D ` F ) .+ ( D ` z ) ) <-> ( D ` E ) = ( ( D ` F ) .+ ( D ` G ) ) ) ) | 
						
							| 55 | 51 54 | imbi12d |  |-  ( z = G -> ( ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` z ) ) ) <-> ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` G ) ) ) ) ) | 
						
							| 56 |  | sneq |  |-  ( w = H -> { w } = { H } ) | 
						
							| 57 | 56 | xpeq1d |  |-  ( w = H -> ( { w } X. N ) = ( { H } X. N ) ) | 
						
							| 58 | 57 | reseq2d |  |-  ( w = H -> ( E |` ( { w } X. N ) ) = ( E |` ( { H } X. N ) ) ) | 
						
							| 59 | 57 | reseq2d |  |-  ( w = H -> ( F |` ( { w } X. N ) ) = ( F |` ( { H } X. N ) ) ) | 
						
							| 60 | 57 | reseq2d |  |-  ( w = H -> ( G |` ( { w } X. N ) ) = ( G |` ( { H } X. N ) ) ) | 
						
							| 61 | 59 60 | oveq12d |  |-  ( w = H -> ( ( F |` ( { w } X. N ) ) oF .+ ( G |` ( { w } X. N ) ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) ) | 
						
							| 62 | 58 61 | eqeq12d |  |-  ( w = H -> ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( G |` ( { w } X. N ) ) ) <-> ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) ) ) | 
						
							| 63 | 56 | difeq2d |  |-  ( w = H -> ( N \ { w } ) = ( N \ { H } ) ) | 
						
							| 64 | 63 | xpeq1d |  |-  ( w = H -> ( ( N \ { w } ) X. N ) = ( ( N \ { H } ) X. N ) ) | 
						
							| 65 | 64 | reseq2d |  |-  ( w = H -> ( E |` ( ( N \ { w } ) X. N ) ) = ( E |` ( ( N \ { H } ) X. N ) ) ) | 
						
							| 66 | 64 | reseq2d |  |-  ( w = H -> ( F |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) ) | 
						
							| 67 | 65 66 | eqeq12d |  |-  ( w = H -> ( ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) ) ) | 
						
							| 68 | 64 | reseq2d |  |-  ( w = H -> ( G |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) | 
						
							| 69 | 65 68 | eqeq12d |  |-  ( w = H -> ( ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) | 
						
							| 70 | 62 67 69 | 3anbi123d |  |-  ( w = H -> ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) ) | 
						
							| 71 | 70 | imbi1d |  |-  ( w = H -> ( ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` G ) ) ) <-> ( ( ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` G ) ) ) ) ) | 
						
							| 72 | 55 71 | rspc2va |  |-  ( ( ( G e. B /\ H e. N ) /\ A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( F |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( F |` ( ( N \ { w } ) X. N ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` z ) ) ) ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` G ) ) ) ) | 
						
							| 73 | 17 18 45 72 | syl21anc |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N ) ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` G ) ) ) ) | 
						
							| 74 | 73 | 3adantr3 |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N /\ ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) ) ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` G ) ) ) ) | 
						
							| 75 | 74 | 3adant3 |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N /\ ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) ) /\ ( ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` G ) ) ) ) | 
						
							| 76 | 14 15 16 75 | mp3and |  |-  ( ( ( ph /\ E e. B /\ F e. B ) /\ ( G e. B /\ H e. N /\ ( E |` ( { H } X. N ) ) = ( ( F |` ( { H } X. N ) ) oF .+ ( G |` ( { H } X. N ) ) ) ) /\ ( ( E |` ( ( N \ { H } ) X. N ) ) = ( F |` ( ( N \ { H } ) X. N ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( D ` E ) = ( ( D ` F ) .+ ( D ` G ) ) ) |