Metamath Proof Explorer


Theorem mdetfval

Description: First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by SO, 9-Jul-2018)

Ref Expression
Hypotheses mdetfval.d D = N maDet R
mdetfval.a A = N Mat R
mdetfval.b B = Base A
mdetfval.p P = Base SymGrp N
mdetfval.y Y = ℤRHom R
mdetfval.s S = pmSgn N
mdetfval.t · ˙ = R
mdetfval.u U = mulGrp R
Assertion mdetfval D = m B R p P Y S p · ˙ U x N p x m x

Proof

Step Hyp Ref Expression
1 mdetfval.d D = N maDet R
2 mdetfval.a A = N Mat R
3 mdetfval.b B = Base A
4 mdetfval.p P = Base SymGrp N
5 mdetfval.y Y = ℤRHom R
6 mdetfval.s S = pmSgn N
7 mdetfval.t · ˙ = R
8 mdetfval.u U = mulGrp R
9 oveq12 n = N r = R n Mat r = N Mat R
10 9 2 eqtr4di n = N r = R n Mat r = A
11 10 fveq2d n = N r = R Base n Mat r = Base A
12 11 3 eqtr4di n = N r = R Base n Mat r = B
13 simpr n = N r = R r = R
14 simpl n = N r = R n = N
15 14 fveq2d n = N r = R SymGrp n = SymGrp N
16 15 fveq2d n = N r = R Base SymGrp n = Base SymGrp N
17 16 4 eqtr4di n = N r = R Base SymGrp n = P
18 fveq2 r = R r = R
19 18 adantl n = N r = R r = R
20 19 7 eqtr4di n = N r = R r = · ˙
21 13 fveq2d n = N r = R ℤRHom r = ℤRHom R
22 21 5 eqtr4di n = N r = R ℤRHom r = Y
23 fveq2 n = N pmSgn n = pmSgn N
24 23 adantr n = N r = R pmSgn n = pmSgn N
25 24 6 eqtr4di n = N r = R pmSgn n = S
26 22 25 coeq12d n = N r = R ℤRHom r pmSgn n = Y S
27 26 fveq1d n = N r = R ℤRHom r pmSgn n p = Y S p
28 fveq2 r = R mulGrp r = mulGrp R
29 28 adantl n = N r = R mulGrp r = mulGrp R
30 29 8 eqtr4di n = N r = R mulGrp r = U
31 14 mpteq1d n = N r = R x n p x m x = x N p x m x
32 30 31 oveq12d n = N r = R mulGrp r x n p x m x = U x N p x m x
33 20 27 32 oveq123d n = N r = R ℤRHom r pmSgn n p r mulGrp r x n p x m x = Y S p · ˙ U x N p x m x
34 17 33 mpteq12dv n = N r = R p Base SymGrp n ℤRHom r pmSgn n p r mulGrp r x n p x m x = p P Y S p · ˙ U x N p x m x
35 13 34 oveq12d n = N r = R r p Base SymGrp n ℤRHom r pmSgn n p r mulGrp r x n p x m x = R p P Y S p · ˙ U x N p x m x
36 12 35 mpteq12dv n = N r = R m Base n Mat r r p Base SymGrp n ℤRHom r pmSgn n p r mulGrp r x n p x m x = m B R p P Y S p · ˙ U x N p x m x
37 df-mdet maDet = n V , r V m Base n Mat r r p Base SymGrp n ℤRHom r pmSgn n p r mulGrp r x n p x m x
38 3 fvexi B V
39 38 mptex m B R p P Y S p · ˙ U x N p x m x V
40 36 37 39 ovmpoa N V R V N maDet R = m B R p P Y S p · ˙ U x N p x m x
41 37 reldmmpo Rel dom maDet
42 41 ovprc ¬ N V R V N maDet R =
43 mpt0 m R p P Y S p · ˙ U x N p x m x =
44 42 43 eqtr4di ¬ N V R V N maDet R = m R p P Y S p · ˙ U x N p x m x
45 df-mat Mat = y Fin , z V z freeLMod y × y sSet ndx z maMul y y y
46 45 reldmmpo Rel dom Mat
47 46 ovprc ¬ N V R V N Mat R =
48 2 47 syl5eq ¬ N V R V A =
49 48 fveq2d ¬ N V R V Base A = Base
50 base0 = Base
51 49 3 50 3eqtr4g ¬ N V R V B =
52 51 mpteq1d ¬ N V R V m B R p P Y S p · ˙ U x N p x m x = m R p P Y S p · ˙ U x N p x m x
53 44 52 eqtr4d ¬ N V R V N maDet R = m B R p P Y S p · ˙ U x N p x m x
54 40 53 pm2.61i N maDet R = m B R p P Y S p · ˙ U x N p x m x
55 1 54 eqtri D = m B R p P Y S p · ˙ U x N p x m x