Metamath Proof Explorer


Theorem smadiadetr

Description: The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg . Special case of the "Laplace expansion", see definition in Lang p. 515. (Contributed by AV, 15-Feb-2019)

Ref Expression
Assertion smadiadetr RCRingMBaseNMatRKNSBaseRNmaDetRKMNmatRRepRSK=SRNKmaDetRKNsubMatRMK

Proof

Step Hyp Ref Expression
1 3anass MBaseNMatRKNSBaseRMBaseNMatRKNSBaseR
2 oveq2 R=ifRCRingRfldNMatR=NMatifRCRingRfld
3 2 fveq2d R=ifRCRingRfldBaseNMatR=BaseNMatifRCRingRfld
4 3 eleq2d R=ifRCRingRfldMBaseNMatRMBaseNMatifRCRingRfld
5 fveq2 R=ifRCRingRfldBaseR=BaseifRCRingRfld
6 5 eleq2d R=ifRCRingRfldSBaseRSBaseifRCRingRfld
7 4 6 3anbi13d R=ifRCRingRfldMBaseNMatRKNSBaseRMBaseNMatifRCRingRfldKNSBaseifRCRingRfld
8 1 7 bitr3id R=ifRCRingRfldMBaseNMatRKNSBaseRMBaseNMatifRCRingRfldKNSBaseifRCRingRfld
9 oveq2 R=ifRCRingRfldNmaDetR=NmaDetifRCRingRfld
10 oveq2 R=ifRCRingRfldNmatRRepR=NmatRRepifRCRingRfld
11 10 oveqd R=ifRCRingRfldMNmatRRepRS=MNmatRRepifRCRingRfldS
12 11 oveqd R=ifRCRingRfldKMNmatRRepRSK=KMNmatRRepifRCRingRfldSK
13 9 12 fveq12d R=ifRCRingRfldNmaDetRKMNmatRRepRSK=NmaDetifRCRingRfldKMNmatRRepifRCRingRfldSK
14 fveq2 R=ifRCRingRfldR=ifRCRingRfld
15 eqidd R=ifRCRingRfldS=S
16 oveq2 R=ifRCRingRfldNKmaDetR=NKmaDetifRCRingRfld
17 oveq2 R=ifRCRingRfldNsubMatR=NsubMatifRCRingRfld
18 17 fveq1d R=ifRCRingRfldNsubMatRM=NsubMatifRCRingRfldM
19 18 oveqd R=ifRCRingRfldKNsubMatRMK=KNsubMatifRCRingRfldMK
20 16 19 fveq12d R=ifRCRingRfldNKmaDetRKNsubMatRMK=NKmaDetifRCRingRfldKNsubMatifRCRingRfldMK
21 14 15 20 oveq123d R=ifRCRingRfldSRNKmaDetRKNsubMatRMK=SifRCRingRfldNKmaDetifRCRingRfldKNsubMatifRCRingRfldMK
22 13 21 eqeq12d R=ifRCRingRfldNmaDetRKMNmatRRepRSK=SRNKmaDetRKNsubMatRMKNmaDetifRCRingRfldKMNmatRRepifRCRingRfldSK=SifRCRingRfldNKmaDetifRCRingRfldKNsubMatifRCRingRfldMK
23 8 22 imbi12d R=ifRCRingRfldMBaseNMatRKNSBaseRNmaDetRKMNmatRRepRSK=SRNKmaDetRKNsubMatRMKMBaseNMatifRCRingRfldKNSBaseifRCRingRfldNmaDetifRCRingRfldKMNmatRRepifRCRingRfldSK=SifRCRingRfldNKmaDetifRCRingRfldKNsubMatifRCRingRfldMK
24 cncrng fldCRing
25 24 elimel ifRCRingRfldCRing
26 25 smadiadetg0 MBaseNMatifRCRingRfldKNSBaseifRCRingRfldNmaDetifRCRingRfldKMNmatRRepifRCRingRfldSK=SifRCRingRfldNKmaDetifRCRingRfldKNsubMatifRCRingRfldMK
27 23 26 dedth RCRingMBaseNMatRKNSBaseRNmaDetRKMNmatRRepRSK=SRNKmaDetRKNsubMatRMK
28 27 impl RCRingMBaseNMatRKNSBaseRNmaDetRKMNmatRRepRSK=SRNKmaDetRKNsubMatRMK