Metamath Proof Explorer


Theorem smadiadetr

Description: The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg . Special case of the "Laplace expansion", see definition in Lang p. 515. (Contributed by AV, 15-Feb-2019)

Ref Expression
Assertion smadiadetr R CRing M Base N Mat R K N S Base R N maDet R K M N matRRep R S K = S R N K maDet R K N subMat R M K

Proof

Step Hyp Ref Expression
1 3anass M Base N Mat R K N S Base R M Base N Mat R K N S Base R
2 oveq2 R = if R CRing R fld N Mat R = N Mat if R CRing R fld
3 2 fveq2d R = if R CRing R fld Base N Mat R = Base N Mat if R CRing R fld
4 3 eleq2d R = if R CRing R fld M Base N Mat R M Base N Mat if R CRing R fld
5 fveq2 R = if R CRing R fld Base R = Base if R CRing R fld
6 5 eleq2d R = if R CRing R fld S Base R S Base if R CRing R fld
7 4 6 3anbi13d R = if R CRing R fld M Base N Mat R K N S Base R M Base N Mat if R CRing R fld K N S Base if R CRing R fld
8 1 7 bitr3id R = if R CRing R fld M Base N Mat R K N S Base R M Base N Mat if R CRing R fld K N S Base if R CRing R fld
9 oveq2 R = if R CRing R fld N maDet R = N maDet if R CRing R fld
10 oveq2 R = if R CRing R fld N matRRep R = N matRRep if R CRing R fld
11 10 oveqd R = if R CRing R fld M N matRRep R S = M N matRRep if R CRing R fld S
12 11 oveqd R = if R CRing R fld K M N matRRep R S K = K M N matRRep if R CRing R fld S K
13 9 12 fveq12d R = if R CRing R fld N maDet R K M N matRRep R S K = N maDet if R CRing R fld K M N matRRep if R CRing R fld S K
14 fveq2 R = if R CRing R fld R = if R CRing R fld
15 eqidd R = if R CRing R fld S = S
16 oveq2 R = if R CRing R fld N K maDet R = N K maDet if R CRing R fld
17 oveq2 R = if R CRing R fld N subMat R = N subMat if R CRing R fld
18 17 fveq1d R = if R CRing R fld N subMat R M = N subMat if R CRing R fld M
19 18 oveqd R = if R CRing R fld K N subMat R M K = K N subMat if R CRing R fld M K
20 16 19 fveq12d R = if R CRing R fld N K maDet R K N subMat R M K = N K maDet if R CRing R fld K N subMat if R CRing R fld M K
21 14 15 20 oveq123d R = if R CRing R fld S R N K maDet R K N subMat R M K = S if R CRing R fld N K maDet if R CRing R fld K N subMat if R CRing R fld M K
22 13 21 eqeq12d R = if R CRing R fld N maDet R K M N matRRep R S K = S R N K maDet R K N subMat R M K N maDet if R CRing R fld K M N matRRep if R CRing R fld S K = S if R CRing R fld N K maDet if R CRing R fld K N subMat if R CRing R fld M K
23 8 22 imbi12d R = if R CRing R fld M Base N Mat R K N S Base R N maDet R K M N matRRep R S K = S R N K maDet R K N subMat R M K M Base N Mat if R CRing R fld K N S Base if R CRing R fld N maDet if R CRing R fld K M N matRRep if R CRing R fld S K = S if R CRing R fld N K maDet if R CRing R fld K N subMat if R CRing R fld M K
24 cncrng fld CRing
25 24 elimel if R CRing R fld CRing
26 25 smadiadetg0 M Base N Mat if R CRing R fld K N S Base if R CRing R fld N maDet if R CRing R fld K M N matRRep if R CRing R fld S K = S if R CRing R fld N K maDet if R CRing R fld K N subMat if R CRing R fld M K
27 23 26 dedth R CRing M Base N Mat R K N S Base R N maDet R K M N matRRep R S K = S R N K maDet R K N subMat R M K
28 27 impl R CRing M Base N Mat R K N S Base R N maDet R K M N matRRep R S K = S R N K maDet R K N subMat R M K