Metamath Proof Explorer


Theorem smadiadetg0

Description: Lemma for smadiadetr : version of smadiadetg with all hypotheses defining class variables removed, i.e. all class variables defined in the hypotheses replaced in the theorem by their definition. (Contributed by AV, 15-Feb-2019)

Ref Expression
Hypothesis smadiadetg0.r R CRing
Assertion smadiadetg0 M Base N Mat R K N S Base R N maDet R K M N matRRep R S K = S R N K maDet R K N subMat R M K

Proof

Step Hyp Ref Expression
1 smadiadetg0.r R CRing
2 eqid N Mat R = N Mat R
3 eqid Base N Mat R = Base N Mat R
4 eqid N maDet R = N maDet R
5 eqid N K maDet R = N K maDet R
6 eqid R = R
7 2 3 1 4 5 6 smadiadetg M Base N Mat R K N S Base R N maDet R K M N matRRep R S K = S R N K maDet R K N subMat R M K