Metamath Proof Explorer


Theorem smadiadetg0

Description: Lemma for smadiadetr : version of smadiadetg with all hypotheses defining class variables removed, i.e. all class variables defined in the hypotheses replaced in the theorem by their definition. (Contributed by AV, 15-Feb-2019)

Ref Expression
Hypothesis smadiadetg0.r RCRing
Assertion smadiadetg0 MBaseNMatRKNSBaseRNmaDetRKMNmatRRepRSK=SRNKmaDetRKNsubMatRMK

Proof

Step Hyp Ref Expression
1 smadiadetg0.r RCRing
2 eqid NMatR=NMatR
3 eqid BaseNMatR=BaseNMatR
4 eqid NmaDetR=NmaDetR
5 eqid NKmaDetR=NKmaDetR
6 eqid R=R
7 2 3 1 4 5 6 smadiadetg MBaseNMatRKNSBaseRNmaDetRKMNmatRRepRSK=SRNKmaDetRKNsubMatRMK