Description: Lemma for smadiadetr : version of smadiadetg with all hypotheses defining class variables removed, i.e. all class variables defined in the hypotheses replaced in the theorem by their definition. (Contributed by AV, 15-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | smadiadetg0.r | ⊢ 𝑅 ∈ CRing | |
Assertion | smadiadetg0 | ⊢ ( ( 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑁 maDet 𝑅 ) ‘ ( 𝐾 ( 𝑀 ( 𝑁 matRRep 𝑅 ) 𝑆 ) 𝐾 ) ) = ( 𝑆 ( .r ‘ 𝑅 ) ( ( ( 𝑁 ∖ { 𝐾 } ) maDet 𝑅 ) ‘ ( 𝐾 ( ( 𝑁 subMat 𝑅 ) ‘ 𝑀 ) 𝐾 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smadiadetg0.r | ⊢ 𝑅 ∈ CRing | |
2 | eqid | ⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) | |
3 | eqid | ⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) | |
4 | eqid | ⊢ ( 𝑁 maDet 𝑅 ) = ( 𝑁 maDet 𝑅 ) | |
5 | eqid | ⊢ ( ( 𝑁 ∖ { 𝐾 } ) maDet 𝑅 ) = ( ( 𝑁 ∖ { 𝐾 } ) maDet 𝑅 ) | |
6 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
7 | 2 3 1 4 5 6 | smadiadetg | ⊢ ( ( 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑁 maDet 𝑅 ) ‘ ( 𝐾 ( 𝑀 ( 𝑁 matRRep 𝑅 ) 𝑆 ) 𝐾 ) ) = ( 𝑆 ( .r ‘ 𝑅 ) ( ( ( 𝑁 ∖ { 𝐾 } ) maDet 𝑅 ) ‘ ( 𝐾 ( ( 𝑁 subMat 𝑅 ) ‘ 𝑀 ) 𝐾 ) ) ) ) |