Description: Lemma for smadiadetr : version of smadiadetg with all hypotheses defining class variables removed, i.e. all class variables defined in the hypotheses replaced in the theorem by their definition. (Contributed by AV, 15-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | smadiadetg0.r | |- R e. CRing |
|
Assertion | smadiadetg0 | |- ( ( M e. ( Base ` ( N Mat R ) ) /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( N maDet R ) ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S ( .r ` R ) ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smadiadetg0.r | |- R e. CRing |
|
2 | eqid | |- ( N Mat R ) = ( N Mat R ) |
|
3 | eqid | |- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
|
4 | eqid | |- ( N maDet R ) = ( N maDet R ) |
|
5 | eqid | |- ( ( N \ { K } ) maDet R ) = ( ( N \ { K } ) maDet R ) |
|
6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
7 | 2 3 1 4 5 6 | smadiadetg | |- ( ( M e. ( Base ` ( N Mat R ) ) /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( N maDet R ) ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S ( .r ` R ) ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) ) ) |