Metamath Proof Explorer


Theorem smadiadetg

Description: The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. (Contributed by AV, 14-Feb-2019)

Ref Expression
Hypotheses smadiadet.a
|- A = ( N Mat R )
smadiadet.b
|- B = ( Base ` A )
smadiadet.r
|- R e. CRing
smadiadet.d
|- D = ( N maDet R )
smadiadet.h
|- E = ( ( N \ { K } ) maDet R )
smadiadetg.x
|- .x. = ( .r ` R )
Assertion smadiadetg
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S .x. ( E ` ( K ( ( N subMat R ) ` M ) K ) ) ) )

Proof

Step Hyp Ref Expression
1 smadiadet.a
 |-  A = ( N Mat R )
2 smadiadet.b
 |-  B = ( Base ` A )
3 smadiadet.r
 |-  R e. CRing
4 smadiadet.d
 |-  D = ( N maDet R )
5 smadiadet.h
 |-  E = ( ( N \ { K } ) maDet R )
6 smadiadetg.x
 |-  .x. = ( .r ` R )
7 eqid
 |-  ( Base ` R ) = ( Base ` R )
8 3 a1i
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> R e. CRing )
9 crngring
 |-  ( R e. CRing -> R e. Ring )
10 3 9 mp1i
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> R e. Ring )
11 simp1
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> M e. B )
12 simp3
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> S e. ( Base ` R ) )
13 simp2
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> K e. N )
14 1 2 marrepcl
 |-  ( ( ( R e. Ring /\ M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ K e. N ) ) -> ( K ( M ( N matRRep R ) S ) K ) e. B )
15 10 11 12 13 13 14 syl32anc
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( K ( M ( N matRRep R ) S ) K ) e. B )
16 1 2 minmar1cl
 |-  ( ( ( R e. Ring /\ M e. B ) /\ ( K e. N /\ K e. N ) ) -> ( K ( ( N minMatR1 R ) ` M ) K ) e. B )
17 10 11 13 13 16 syl22anc
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( K ( ( N minMatR1 R ) ` M ) K ) e. B )
18 1 2 3 4 5 6 smadiadetglem2
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( K ( M ( N matRRep R ) S ) K ) |` ( { K } X. N ) ) = ( ( ( { K } X. N ) X. { S } ) oF .x. ( ( K ( ( N minMatR1 R ) ` M ) K ) |` ( { K } X. N ) ) ) )
19 1 2 3 4 5 smadiadetglem1
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( K ( M ( N matRRep R ) S ) K ) |` ( ( N \ { K } ) X. N ) ) = ( ( K ( ( N minMatR1 R ) ` M ) K ) |` ( ( N \ { K } ) X. N ) ) )
20 4 1 2 7 6 8 15 12 17 13 18 19 mdetrsca
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S .x. ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) ) )
21 1 2 3 4 5 smadiadet
 |-  ( ( M e. B /\ K e. N ) -> ( E ` ( K ( ( N subMat R ) ` M ) K ) ) = ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) )
22 21 3adant3
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( E ` ( K ( ( N subMat R ) ` M ) K ) ) = ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) )
23 22 eqcomd
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) = ( E ` ( K ( ( N subMat R ) ` M ) K ) ) )
24 23 oveq2d
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( S .x. ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) ) = ( S .x. ( E ` ( K ( ( N subMat R ) ` M ) K ) ) ) )
25 20 24 eqtrd
 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S .x. ( E ` ( K ( ( N subMat R ) ` M ) K ) ) ) )