| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smadiadet.a |
|- A = ( N Mat R ) |
| 2 |
|
smadiadet.b |
|- B = ( Base ` A ) |
| 3 |
|
smadiadet.r |
|- R e. CRing |
| 4 |
|
smadiadet.d |
|- D = ( N maDet R ) |
| 5 |
|
smadiadet.h |
|- E = ( ( N \ { K } ) maDet R ) |
| 6 |
|
smadiadetg.x |
|- .x. = ( .r ` R ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
3
|
a1i |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> R e. CRing ) |
| 9 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 10 |
3 9
|
mp1i |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> R e. Ring ) |
| 11 |
|
simp1 |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> M e. B ) |
| 12 |
|
simp3 |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> S e. ( Base ` R ) ) |
| 13 |
|
simp2 |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> K e. N ) |
| 14 |
1 2
|
marrepcl |
|- ( ( ( R e. Ring /\ M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ K e. N ) ) -> ( K ( M ( N matRRep R ) S ) K ) e. B ) |
| 15 |
10 11 12 13 13 14
|
syl32anc |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( K ( M ( N matRRep R ) S ) K ) e. B ) |
| 16 |
1 2
|
minmar1cl |
|- ( ( ( R e. Ring /\ M e. B ) /\ ( K e. N /\ K e. N ) ) -> ( K ( ( N minMatR1 R ) ` M ) K ) e. B ) |
| 17 |
10 11 13 13 16
|
syl22anc |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( K ( ( N minMatR1 R ) ` M ) K ) e. B ) |
| 18 |
1 2 3 4 5 6
|
smadiadetglem2 |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( K ( M ( N matRRep R ) S ) K ) |` ( { K } X. N ) ) = ( ( ( { K } X. N ) X. { S } ) oF .x. ( ( K ( ( N minMatR1 R ) ` M ) K ) |` ( { K } X. N ) ) ) ) |
| 19 |
1 2 3 4 5
|
smadiadetglem1 |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( K ( M ( N matRRep R ) S ) K ) |` ( ( N \ { K } ) X. N ) ) = ( ( K ( ( N minMatR1 R ) ` M ) K ) |` ( ( N \ { K } ) X. N ) ) ) |
| 20 |
4 1 2 7 6 8 15 12 17 13 18 19
|
mdetrsca |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S .x. ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) ) ) |
| 21 |
1 2 3 4 5
|
smadiadet |
|- ( ( M e. B /\ K e. N ) -> ( E ` ( K ( ( N subMat R ) ` M ) K ) ) = ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) ) |
| 22 |
21
|
3adant3 |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( E ` ( K ( ( N subMat R ) ` M ) K ) ) = ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) ) |
| 23 |
22
|
eqcomd |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) = ( E ` ( K ( ( N subMat R ) ` M ) K ) ) ) |
| 24 |
23
|
oveq2d |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( S .x. ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) ) = ( S .x. ( E ` ( K ( ( N subMat R ) ` M ) K ) ) ) ) |
| 25 |
20 24
|
eqtrd |
|- ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S .x. ( E ` ( K ( ( N subMat R ) ` M ) K ) ) ) ) |