| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetralt2.d |
|
| 2 |
|
mdetralt2.k |
|
| 3 |
|
mdetralt2.z |
|
| 4 |
|
mdetralt2.r |
|
| 5 |
|
mdetralt2.n |
|
| 6 |
|
mdetralt2.x |
|
| 7 |
|
mdetralt2.y |
|
| 8 |
|
mdetralt2.i |
|
| 9 |
|
mdetralt2.j |
|
| 10 |
|
mdetralt2.ij |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
6
|
3adant2 |
|
| 14 |
13 7
|
ifcld |
|
| 15 |
13 14
|
ifcld |
|
| 16 |
11 2 12 5 4 15
|
matbas2d |
|
| 17 |
|
eqidd |
|
| 18 |
|
iftrue |
|
| 19 |
18
|
ad2antrl |
|
| 20 |
|
csbeq1a |
|
| 21 |
20
|
ad2antll |
|
| 22 |
19 21
|
eqtrd |
|
| 23 |
|
eqidd |
|
| 24 |
8
|
adantr |
|
| 25 |
|
simpr |
|
| 26 |
|
nfv |
|
| 27 |
|
nfcsb1v |
|
| 28 |
27
|
nfel1 |
|
| 29 |
26 28
|
nfim |
|
| 30 |
|
eleq1w |
|
| 31 |
30
|
anbi2d |
|
| 32 |
20
|
eleq1d |
|
| 33 |
31 32
|
imbi12d |
|
| 34 |
29 33 6
|
chvarfv |
|
| 35 |
|
nfv |
|
| 36 |
|
nfcv |
|
| 37 |
|
nfcv |
|
| 38 |
|
nfcv |
|
| 39 |
17 22 23 24 25 34 35 26 36 37 38 27
|
ovmpodxf |
|
| 40 |
|
iftrue |
|
| 41 |
40
|
ifeq2d |
|
| 42 |
|
ifid |
|
| 43 |
41 42
|
eqtrdi |
|
| 44 |
43
|
ad2antrl |
|
| 45 |
20
|
ad2antll |
|
| 46 |
44 45
|
eqtrd |
|
| 47 |
|
eqidd |
|
| 48 |
9
|
adantr |
|
| 49 |
|
nfcv |
|
| 50 |
17 46 47 48 25 34 35 26 49 37 38 27
|
ovmpodxf |
|
| 51 |
39 50
|
eqtr4d |
|
| 52 |
51
|
ralrimiva |
|
| 53 |
1 11 12 3 4 16 8 9 10 52
|
mdetralt |
|