| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mattposcl.a |
|- A = ( N Mat R ) |
| 2 |
|
mattposcl.b |
|- B = ( Base ` A ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
1 3 2
|
matbas2i |
|- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 5 |
|
elmapi |
|- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 6 |
|
tposf |
|- ( M : ( N X. N ) --> ( Base ` R ) -> tpos M : ( N X. N ) --> ( Base ` R ) ) |
| 7 |
4 5 6
|
3syl |
|- ( M e. B -> tpos M : ( N X. N ) --> ( Base ` R ) ) |
| 8 |
|
fvex |
|- ( Base ` R ) e. _V |
| 9 |
1 2
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
| 10 |
9
|
simpld |
|- ( M e. B -> N e. Fin ) |
| 11 |
|
xpfi |
|- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
| 12 |
11
|
anidms |
|- ( N e. Fin -> ( N X. N ) e. Fin ) |
| 13 |
10 12
|
syl |
|- ( M e. B -> ( N X. N ) e. Fin ) |
| 14 |
|
elmapg |
|- ( ( ( Base ` R ) e. _V /\ ( N X. N ) e. Fin ) -> ( tpos M e. ( ( Base ` R ) ^m ( N X. N ) ) <-> tpos M : ( N X. N ) --> ( Base ` R ) ) ) |
| 15 |
8 13 14
|
sylancr |
|- ( M e. B -> ( tpos M e. ( ( Base ` R ) ^m ( N X. N ) ) <-> tpos M : ( N X. N ) --> ( Base ` R ) ) ) |
| 16 |
7 15
|
mpbird |
|- ( M e. B -> tpos M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 17 |
1 3
|
matbas2 |
|- ( ( N e. Fin /\ R e. _V ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 18 |
9 17
|
syl |
|- ( M e. B -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 19 |
18 2
|
eqtr4di |
|- ( M e. B -> ( ( Base ` R ) ^m ( N X. N ) ) = B ) |
| 20 |
16 19
|
eleqtrd |
|- ( M e. B -> tpos M e. B ) |