| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetf.d |
|- D = ( N maDet R ) |
| 2 |
|
mdetf.a |
|- A = ( N Mat R ) |
| 3 |
|
mdetf.b |
|- B = ( Base ` A ) |
| 4 |
|
mdetf.k |
|- K = ( Base ` R ) |
| 5 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 6 |
5
|
adantr |
|- ( ( R e. CRing /\ m e. B ) -> R e. Ring ) |
| 7 |
|
ringcmn |
|- ( R e. Ring -> R e. CMnd ) |
| 8 |
6 7
|
syl |
|- ( ( R e. CRing /\ m e. B ) -> R e. CMnd ) |
| 9 |
2 3
|
matrcl |
|- ( m e. B -> ( N e. Fin /\ R e. _V ) ) |
| 10 |
9
|
adantl |
|- ( ( R e. CRing /\ m e. B ) -> ( N e. Fin /\ R e. _V ) ) |
| 11 |
10
|
simpld |
|- ( ( R e. CRing /\ m e. B ) -> N e. Fin ) |
| 12 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
| 13 |
|
eqid |
|- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
| 14 |
12 13
|
symgbasfi |
|- ( N e. Fin -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
| 15 |
11 14
|
syl |
|- ( ( R e. CRing /\ m e. B ) -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
| 16 |
5
|
ad2antrr |
|- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> R e. Ring ) |
| 17 |
|
zrhpsgnmhm |
|- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 18 |
6 11 17
|
syl2anc |
|- ( ( R e. CRing /\ m e. B ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 19 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 20 |
19 4
|
mgpbas |
|- K = ( Base ` ( mulGrp ` R ) ) |
| 21 |
13 20
|
mhmf |
|- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 22 |
18 21
|
syl |
|- ( ( R e. CRing /\ m e. B ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 23 |
22
|
ffvelcdmda |
|- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. K ) |
| 24 |
19
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 25 |
24
|
ad2antrr |
|- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( mulGrp ` R ) e. CMnd ) |
| 26 |
11
|
adantr |
|- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> N e. Fin ) |
| 27 |
2 4 3
|
matbas2i |
|- ( m e. B -> m e. ( K ^m ( N X. N ) ) ) |
| 28 |
27
|
ad3antlr |
|- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> m e. ( K ^m ( N X. N ) ) ) |
| 29 |
|
elmapi |
|- ( m e. ( K ^m ( N X. N ) ) -> m : ( N X. N ) --> K ) |
| 30 |
28 29
|
syl |
|- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> m : ( N X. N ) --> K ) |
| 31 |
12 13
|
symgbasf |
|- ( p e. ( Base ` ( SymGrp ` N ) ) -> p : N --> N ) |
| 32 |
31
|
adantl |
|- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> p : N --> N ) |
| 33 |
32
|
ffvelcdmda |
|- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( p ` c ) e. N ) |
| 34 |
|
simpr |
|- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> c e. N ) |
| 35 |
30 33 34
|
fovcdmd |
|- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( ( p ` c ) m c ) e. K ) |
| 36 |
35
|
ralrimiva |
|- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> A. c e. N ( ( p ` c ) m c ) e. K ) |
| 37 |
20 25 26 36
|
gsummptcl |
|- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) e. K ) |
| 38 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 39 |
4 38
|
ringcl |
|- ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. K /\ ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) e. K ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) e. K ) |
| 40 |
16 23 37 39
|
syl3anc |
|- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) e. K ) |
| 41 |
40
|
ralrimiva |
|- ( ( R e. CRing /\ m e. B ) -> A. p e. ( Base ` ( SymGrp ` N ) ) ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) e. K ) |
| 42 |
4 8 15 41
|
gsummptcl |
|- ( ( R e. CRing /\ m e. B ) -> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) ) ) e. K ) |
| 43 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 44 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
| 45 |
1 2 3 13 43 44 38 19
|
mdetfval |
|- D = ( m e. B |-> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) ) ) ) |
| 46 |
42 45
|
fmptd |
|- ( R e. CRing -> D : B --> K ) |