| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadugsum.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmadugsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmadugsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmadugsum.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmadugsum.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 6 |  | cpmadugsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | cpmadugsum.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 8 |  | cpmadugsum.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 9 |  | cpmadugsum.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 10 |  | cpmadugsum.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 11 |  | cpmadugsum.g | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 12 |  | cpmadugsum.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 13 |  | cpmadugsum.i | ⊢ 𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 14 |  | cpmadugsum.j | ⊢ 𝐽  =  ( 𝑁  maAdju  𝑃 ) | 
						
							| 15 |  | cpmadugsum.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 16 |  | cpmadugsum.g2 | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 17 |  | cpmidgsum2.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 18 |  | cpmidgsum2.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 19 |  | cpmidgsum2.h | ⊢ 𝐻  =  ( 𝐾  ·   1  ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | cpmadugsum | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 21 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 22 | 21 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 23 | 22 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 24 | 3 4 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 25 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 26 | 23 24 25 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Grp ) | 
						
							| 27 | 3 4 | pmatlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  LMod ) | 
						
							| 28 | 21 27 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  LMod ) | 
						
							| 29 | 21 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Ring ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 31 | 6 3 30 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 33 | 3 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 34 | 4 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 35 | 33 34 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Base ‘ 𝑃 )  =  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 37 | 32 36 | eleqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 38 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 39 | 38 10 | ringidcl | ⊢ ( 𝑌  ∈  Ring  →   1   ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 40 | 22 24 39 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →   1   ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 41 |  | eqid | ⊢ ( Scalar ‘ 𝑌 )  =  ( Scalar ‘ 𝑌 ) | 
						
							| 42 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ ( Scalar ‘ 𝑌 ) ) | 
						
							| 43 | 38 41 8 42 | lmodvscl | ⊢ ( ( 𝑌  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ∧   1   ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 44 | 28 37 40 43 | syl3anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 45 | 44 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 46 | 5 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 47 | 21 46 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 48 | 38 12 | grpsubcl | ⊢ ( ( 𝑌  ∈  Grp  ∧  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 49 | 26 45 47 48 | syl3anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 50 | 33 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  CRing ) | 
						
							| 51 |  | eqid | ⊢ ( 𝑁  maDet  𝑃 )  =  ( 𝑁  maDet  𝑃 ) | 
						
							| 52 | 4 38 14 51 10 9 8 | madurid | ⊢ ( ( ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 )  ∧  𝑃  ∈  CRing )  →  ( ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐽 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) )  =  ( ( ( 𝑁  maDet  𝑃 ) ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) )  ·   1  ) ) | 
						
							| 53 | 49 50 52 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐽 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) )  =  ( ( ( 𝑁  maDet  𝑃 ) ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) )  ·   1  ) ) | 
						
							| 54 |  | id | ⊢ ( 𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  →  𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  →  ( 𝐽 ‘ 𝐼 )  =  ( 𝐽 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 56 | 54 55 | oveq12d | ⊢ ( 𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐽 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) ) | 
						
							| 57 | 13 56 | mp1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐽 ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) ) | 
						
							| 58 | 17 1 2 3 4 51 12 6 8 5 10 | chpmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  =  ( ( 𝑁  maDet  𝑃 ) ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 59 | 18 58 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐾  =  ( ( 𝑁  maDet  𝑃 ) ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐾  ·   1  )  =  ( ( ( 𝑁  maDet  𝑃 ) ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) )  ·   1  ) ) | 
						
							| 61 | 19 60 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐻  =  ( ( ( 𝑁  maDet  𝑃 ) ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) )  ·   1  ) ) | 
						
							| 62 | 53 57 61 | 3eqtr4rd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐻  =  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  →  𝐻  =  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) ) ) | 
						
							| 64 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 65 | 63 64 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  →  𝐻  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 66 | 65 | ex | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  →  𝐻  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 67 | 66 | reximdv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  →  ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) 𝐻  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 68 | 67 | reximdv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) 𝐻  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 69 | 20 68 | mpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) 𝐻  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) |