Metamath Proof Explorer


Theorem cpmidgsum2

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmadugsum.p 𝑃 = ( Poly1𝑅 )
cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cpmadugsum.x 𝑋 = ( var1𝑅 )
cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmadugsum.m · = ( ·𝑠𝑌 )
cpmadugsum.r × = ( .r𝑌 )
cpmadugsum.1 1 = ( 1r𝑌 )
cpmadugsum.g + = ( +g𝑌 )
cpmadugsum.s = ( -g𝑌 )
cpmadugsum.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
cpmadugsum.j 𝐽 = ( 𝑁 maAdju 𝑃 )
cpmadugsum.0 0 = ( 0g𝑌 )
cpmadugsum.g2 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
cpmidgsum2.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
cpmidgsum2.k 𝐾 = ( 𝐶𝑀 )
cpmidgsum2.h 𝐻 = ( 𝐾 · 1 )
Assertion cpmidgsum2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmadugsum.p 𝑃 = ( Poly1𝑅 )
4 cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
6 cpmadugsum.x 𝑋 = ( var1𝑅 )
7 cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
8 cpmadugsum.m · = ( ·𝑠𝑌 )
9 cpmadugsum.r × = ( .r𝑌 )
10 cpmadugsum.1 1 = ( 1r𝑌 )
11 cpmadugsum.g + = ( +g𝑌 )
12 cpmadugsum.s = ( -g𝑌 )
13 cpmadugsum.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
14 cpmadugsum.j 𝐽 = ( 𝑁 maAdju 𝑃 )
15 cpmadugsum.0 0 = ( 0g𝑌 )
16 cpmadugsum.g2 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
17 cpmidgsum2.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
18 cpmidgsum2.k 𝐾 = ( 𝐶𝑀 )
19 cpmidgsum2.h 𝐻 = ( 𝐾 · 1 )
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 cpmadugsum ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )
21 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
22 21 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
23 22 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
24 3 4 pmatring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring )
25 ringgrp ( 𝑌 ∈ Ring → 𝑌 ∈ Grp )
26 23 24 25 3syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ Grp )
27 3 4 pmatlmod ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ LMod )
28 21 27 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ LMod )
29 21 adantl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring )
30 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
31 6 3 30 vr1cl ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
32 29 31 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) )
33 3 ply1crng ( 𝑅 ∈ CRing → 𝑃 ∈ CRing )
34 4 matsca2 ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) )
35 33 34 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) )
36 35 fveq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
37 32 36 eleqtrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
38 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
39 38 10 ringidcl ( 𝑌 ∈ Ring → 1 ∈ ( Base ‘ 𝑌 ) )
40 22 24 39 3syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 1 ∈ ( Base ‘ 𝑌 ) )
41 eqid ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 )
42 eqid ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) )
43 38 41 8 42 lmodvscl ( ( 𝑌 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 1 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) )
44 28 37 40 43 syl3anc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) )
45 44 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) )
46 5 1 2 3 4 mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
47 21 46 syl3an2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
48 38 12 grpsubcl ( ( 𝑌 ∈ Grp ∧ ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑌 ) )
49 26 45 47 48 syl3anc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑌 ) )
50 33 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑃 ∈ CRing )
51 eqid ( 𝑁 maDet 𝑃 ) = ( 𝑁 maDet 𝑃 )
52 4 38 14 51 10 9 8 madurid ( ( ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ∧ 𝑃 ∈ CRing ) → ( ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) × ( 𝐽 ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) · 1 ) )
53 49 50 52 syl2anc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) × ( 𝐽 ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) · 1 ) )
54 id ( 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) → 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) )
55 fveq2 ( 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) → ( 𝐽𝐼 ) = ( 𝐽 ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) )
56 54 55 oveq12d ( 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) × ( 𝐽 ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) ) )
57 13 56 mp1i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) × ( 𝐽 ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) ) )
58 17 1 2 3 4 51 12 6 8 5 10 chpmatval ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐶𝑀 ) = ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) )
59 18 58 eqtrid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐾 = ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) )
60 59 oveq1d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐾 · 1 ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) · 1 ) )
61 19 60 eqtrid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐻 = ( ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) · 1 ) )
62 53 57 61 3eqtr4rd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐻 = ( 𝐼 × ( 𝐽𝐼 ) ) )
63 62 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) → 𝐻 = ( 𝐼 × ( 𝐽𝐼 ) ) )
64 simpr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )
65 63 64 eqtrd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) → 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )
66 65 ex ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) → 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) )
67 66 reximdv ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) → ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) )
68 67 reximdv ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) )
69 20 68 mpd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )