| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadugsum.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmadugsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmadugsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmadugsum.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmadugsum.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 6 |  | cpmadugsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | cpmadugsum.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 8 |  | cpmadugsum.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 9 |  | cpmadugsum.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 10 |  | cpmadugsum.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 11 |  | cpmadugsum.g | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 12 |  | cpmadugsum.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 13 |  | cpmadugsum.i | ⊢ 𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 14 |  | cpmadugsum.j | ⊢ 𝐽  =  ( 𝑁  maAdju  𝑃 ) | 
						
							| 15 |  | cpmadugsum.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 16 |  | cpmadugsum.g2 | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 17 |  | cpmidgsum2.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 18 |  | cpmidgsum2.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 19 |  | cpmidg2sum.u | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 20 |  | eqid | ⊢ ( 𝐾  ·   1  )  =  ( 𝐾  ·   1  ) | 
						
							| 21 | 1 2 3 4 6 7 8 10 19 17 18 20 | cpmidgsum | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐾  ·   1  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) )  ·   1  ) ) ) ) ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) )  ·   1  ) ) ) )  =  ( 𝐾  ·   1  ) ) | 
						
							| 23 | 22 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ( 𝐾  ·   1  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) )  ·   1  ) ) ) )  =  ( 𝐾  ·   1  ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ( 𝐾  ·   1  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  →  ( 𝐾  ·   1  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 25 | 23 24 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ( 𝐾  ·   1  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) )  ·   1  ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 | cpmidgsum2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐾  ·   1  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 27 | 25 26 | reximddv2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) )  ·   1  ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) |