| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmidgsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmidgsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmidgsum.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmidgsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 6 |  | cpmidgsum.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 7 |  | cpmidgsum.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 8 |  | cpmidgsum.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 9 |  | cpmidgsum.u | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 10 |  | cpmidgsum.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 11 |  | cpmidgsum.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 12 |  | cpmidgsum.h | ⊢ 𝐻  =  ( 𝐾  ·   1  ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 14 | 10 1 2 3 13 | chpmatply1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 15 | 11 14 | eqeltrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐾  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑁  matToPolyMat  𝑅 )  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 19 | 3 4 16 7 6 5 17 1 2 9 18 13 9 8 12 | pmatcollpwscmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝐾  ∈  ( Base ‘ 𝑃 ) )  →  𝐻  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·   1  ) ) ) ) ) | 
						
							| 20 | 15 19 | syld3an3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐻  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·   1  ) ) ) ) ) |