Metamath Proof Explorer


Theorem cpmidgsum

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmidgsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmidgsum.p 𝑃 = ( Poly1𝑅 )
cpmidgsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmidgsum.x 𝑋 = ( var1𝑅 )
cpmidgsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmidgsum.m · = ( ·𝑠𝑌 )
cpmidgsum.1 1 = ( 1r𝑌 )
cpmidgsum.u 𝑈 = ( algSc ‘ 𝑃 )
cpmidgsum.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
cpmidgsum.k 𝐾 = ( 𝐶𝑀 )
cpmidgsum.h 𝐻 = ( 𝐾 · 1 )
Assertion cpmidgsum ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmidgsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmidgsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmidgsum.p 𝑃 = ( Poly1𝑅 )
4 cpmidgsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmidgsum.x 𝑋 = ( var1𝑅 )
6 cpmidgsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
7 cpmidgsum.m · = ( ·𝑠𝑌 )
8 cpmidgsum.1 1 = ( 1r𝑌 )
9 cpmidgsum.u 𝑈 = ( algSc ‘ 𝑃 )
10 cpmidgsum.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
11 cpmidgsum.k 𝐾 = ( 𝐶𝑀 )
12 cpmidgsum.h 𝐻 = ( 𝐾 · 1 )
13 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
14 10 1 2 3 13 chpmatply1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐶𝑀 ) ∈ ( Base ‘ 𝑃 ) )
15 11 14 eqeltrid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐾 ∈ ( Base ‘ 𝑃 ) )
16 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
17 eqid ( 𝑁 matToPolyMat 𝑅 ) = ( 𝑁 matToPolyMat 𝑅 )
18 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
19 3 4 16 7 6 5 17 1 2 9 18 13 9 8 12 pmatcollpwscmat ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐾 ∈ ( Base ‘ 𝑃 ) ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) ) )
20 15 19 syld3an3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) ) )