| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | cpmidgsum.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | cpmidgsum.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | cpmidgsum.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | cpmidgsum.x |  |-  X = ( var1 ` R ) | 
						
							| 6 |  | cpmidgsum.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 7 |  | cpmidgsum.m |  |-  .x. = ( .s ` Y ) | 
						
							| 8 |  | cpmidgsum.1 |  |-  .1. = ( 1r ` Y ) | 
						
							| 9 |  | cpmidgsum.u |  |-  U = ( algSc ` P ) | 
						
							| 10 |  | cpmidgsum.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 11 |  | cpmidgsum.k |  |-  K = ( C ` M ) | 
						
							| 12 |  | cpmidgsum.h |  |-  H = ( K .x. .1. ) | 
						
							| 13 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 14 | 10 1 2 3 13 | chpmatply1 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) ) | 
						
							| 15 | 11 14 | eqeltrid |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` P ) ) | 
						
							| 16 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 17 |  | eqid |  |-  ( N matToPolyMat R ) = ( N matToPolyMat R ) | 
						
							| 18 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 19 | 3 4 16 7 6 5 17 1 2 9 18 13 9 8 12 | pmatcollpwscmat |  |-  ( ( N e. Fin /\ R e. CRing /\ K e. ( Base ` P ) ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) ) | 
						
							| 20 | 15 19 | syld3an3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) ) |