| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | cpmidgsum.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | cpmidgsum.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | cpmidgsum.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | cpmidgsum.x |  |-  X = ( var1 ` R ) | 
						
							| 6 |  | cpmidgsum.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 7 |  | cpmidgsum.m |  |-  .x. = ( .s ` Y ) | 
						
							| 8 |  | cpmidgsum.1 |  |-  .1. = ( 1r ` Y ) | 
						
							| 9 |  | cpmidgsum.u |  |-  U = ( algSc ` P ) | 
						
							| 10 |  | cpmidgsum.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 11 |  | cpmidgsum.k |  |-  K = ( C ` M ) | 
						
							| 12 |  | cpmidgsum.h |  |-  H = ( K .x. .1. ) | 
						
							| 13 |  | cpmidgsumm2pm.o |  |-  O = ( 1r ` A ) | 
						
							| 14 |  | cpmidgsumm2pm.m |  |-  .* = ( .s ` A ) | 
						
							| 15 |  | cpmidgsumm2pm.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 | cpmidgsum |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) ) | 
						
							| 17 |  | 3simpa |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. CRing ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( N e. Fin /\ R e. CRing ) ) | 
						
							| 19 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 20 | 10 1 2 3 19 | chpmatply1 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) ) | 
						
							| 21 | 11 20 | eqeltrid |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` P ) ) | 
						
							| 22 |  | eqid |  |-  ( coe1 ` K ) = ( coe1 ` K ) | 
						
							| 23 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 24 | 22 19 3 23 | coe1fvalcl |  |-  ( ( K e. ( Base ` P ) /\ n e. NN0 ) -> ( ( coe1 ` K ) ` n ) e. ( Base ` R ) ) | 
						
							| 25 | 21 24 | sylan |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( coe1 ` K ) ` n ) e. ( Base ` R ) ) | 
						
							| 26 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 27 | 26 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 28 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 29 | 2 13 | ringidcl |  |-  ( A e. Ring -> O e. B ) | 
						
							| 30 | 27 28 29 | 3syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> O e. B ) | 
						
							| 31 | 30 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> O e. B ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> O e. B ) | 
						
							| 33 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 34 | 15 1 2 3 4 33 23 9 14 7 | mat2pmatlin |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( ( ( coe1 ` K ) ` n ) e. ( Base ` R ) /\ O e. B ) ) -> ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) = ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. ( T ` O ) ) ) | 
						
							| 35 | 18 25 32 34 | syl12anc |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) = ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. ( T ` O ) ) ) | 
						
							| 36 | 15 1 2 3 4 33 | mat2pmatrhm |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingHom Y ) ) | 
						
							| 37 | 13 8 | rhm1 |  |-  ( T e. ( A RingHom Y ) -> ( T ` O ) = .1. ) | 
						
							| 38 | 17 36 37 | 3syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( T ` O ) = .1. ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( T ` O ) = .1. ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. ( T ` O ) ) = ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) | 
						
							| 41 | 35 40 | eqtr2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) = ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) = ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) | 
						
							| 43 | 42 | mpteq2dva |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) = ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) ) | 
						
							| 45 | 16 44 | eqtrd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) ) |