Metamath Proof Explorer


Theorem cpmidgsumm2pm

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmidgsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmidgsum.p 𝑃 = ( Poly1𝑅 )
cpmidgsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmidgsum.x 𝑋 = ( var1𝑅 )
cpmidgsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmidgsum.m · = ( ·𝑠𝑌 )
cpmidgsum.1 1 = ( 1r𝑌 )
cpmidgsum.u 𝑈 = ( algSc ‘ 𝑃 )
cpmidgsum.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
cpmidgsum.k 𝐾 = ( 𝐶𝑀 )
cpmidgsum.h 𝐻 = ( 𝐾 · 1 )
cpmidgsumm2pm.o 𝑂 = ( 1r𝐴 )
cpmidgsumm2pm.m = ( ·𝑠𝐴 )
cpmidgsumm2pm.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
Assertion cpmidgsumm2pm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1𝐾 ) ‘ 𝑛 ) 𝑂 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmidgsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmidgsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmidgsum.p 𝑃 = ( Poly1𝑅 )
4 cpmidgsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmidgsum.x 𝑋 = ( var1𝑅 )
6 cpmidgsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
7 cpmidgsum.m · = ( ·𝑠𝑌 )
8 cpmidgsum.1 1 = ( 1r𝑌 )
9 cpmidgsum.u 𝑈 = ( algSc ‘ 𝑃 )
10 cpmidgsum.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
11 cpmidgsum.k 𝐾 = ( 𝐶𝑀 )
12 cpmidgsum.h 𝐻 = ( 𝐾 · 1 )
13 cpmidgsumm2pm.o 𝑂 = ( 1r𝐴 )
14 cpmidgsumm2pm.m = ( ·𝑠𝐴 )
15 cpmidgsumm2pm.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
16 1 2 3 4 5 6 7 8 9 10 11 12 cpmidgsum ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) ) )
17 3simpa ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) )
18 17 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) )
19 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
20 10 1 2 3 19 chpmatply1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐶𝑀 ) ∈ ( Base ‘ 𝑃 ) )
21 11 20 eqeltrid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐾 ∈ ( Base ‘ 𝑃 ) )
22 eqid ( coe1𝐾 ) = ( coe1𝐾 )
23 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
24 22 19 3 23 coe1fvalcl ( ( 𝐾 ∈ ( Base ‘ 𝑃 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1𝐾 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) )
25 21 24 sylan ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1𝐾 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) )
26 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
27 26 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
28 1 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
29 2 13 ringidcl ( 𝐴 ∈ Ring → 𝑂𝐵 )
30 27 28 29 3syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑂𝐵 )
31 30 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑂𝐵 )
32 31 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑂𝐵 )
33 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
34 15 1 2 3 4 33 23 9 14 7 mat2pmatlin ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( ( ( coe1𝐾 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑂𝐵 ) ) → ( 𝑇 ‘ ( ( ( coe1𝐾 ) ‘ 𝑛 ) 𝑂 ) ) = ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · ( 𝑇𝑂 ) ) )
35 18 25 32 34 syl12anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( ( ( coe1𝐾 ) ‘ 𝑛 ) 𝑂 ) ) = ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · ( 𝑇𝑂 ) ) )
36 15 1 2 3 4 33 mat2pmatrhm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingHom 𝑌 ) )
37 13 8 rhm1 ( 𝑇 ∈ ( 𝐴 RingHom 𝑌 ) → ( 𝑇𝑂 ) = 1 )
38 17 36 37 3syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑇𝑂 ) = 1 )
39 38 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇𝑂 ) = 1 )
40 39 oveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · ( 𝑇𝑂 ) ) = ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · 1 ) )
41 35 40 eqtr2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · 1 ) = ( 𝑇 ‘ ( ( ( coe1𝐾 ) ‘ 𝑛 ) 𝑂 ) ) )
42 41 oveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · 1 ) ) = ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1𝐾 ) ‘ 𝑛 ) 𝑂 ) ) ) )
43 42 mpteq2dva ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1𝐾 ) ‘ 𝑛 ) 𝑂 ) ) ) ) )
44 43 oveq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1𝐾 ) ‘ 𝑛 ) 𝑂 ) ) ) ) ) )
45 16 44 eqtrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1𝐾 ) ‘ 𝑛 ) 𝑂 ) ) ) ) ) )