| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmidgsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmidgsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmidgsum.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmidgsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 6 |  | cpmidgsum.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 7 |  | cpmidgsum.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 8 |  | cpmidgsum.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 9 |  | cpmidgsum.u | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 10 |  | cpmidgsum.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 11 |  | cpmidgsum.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 12 |  | cpmidgsum.h | ⊢ 𝐻  =  ( 𝐾  ·   1  ) | 
						
							| 13 |  | cpmidgsumm2pm.o | ⊢ 𝑂  =  ( 1r ‘ 𝐴 ) | 
						
							| 14 |  | cpmidgsumm2pm.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 15 |  | cpmidgsumm2pm.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 | cpmidgsum | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐻  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·   1  ) ) ) ) ) | 
						
							| 17 |  | 3simpa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 20 | 10 1 2 3 19 | chpmatply1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 21 | 11 20 | eqeltrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐾  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 22 |  | eqid | ⊢ ( coe1 ‘ 𝐾 )  =  ( coe1 ‘ 𝐾 ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 24 | 22 19 3 23 | coe1fvalcl | ⊢ ( ( 𝐾  ∈  ( Base ‘ 𝑃 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 25 | 21 24 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 27 | 26 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 28 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 29 | 2 13 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →  𝑂  ∈  𝐵 ) | 
						
							| 30 | 27 28 29 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑂  ∈  𝐵 ) | 
						
							| 31 | 30 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑂  ∈  𝐵 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑂  ∈  𝐵 ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 34 | 15 1 2 3 4 33 23 9 14 7 | mat2pmatlin | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑂  ∈  𝐵 ) )  →  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·  ( 𝑇 ‘ 𝑂 ) ) ) | 
						
							| 35 | 18 25 32 34 | syl12anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·  ( 𝑇 ‘ 𝑂 ) ) ) | 
						
							| 36 | 15 1 2 3 4 33 | mat2pmatrhm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑇  ∈  ( 𝐴  RingHom  𝑌 ) ) | 
						
							| 37 | 13 8 | rhm1 | ⊢ ( 𝑇  ∈  ( 𝐴  RingHom  𝑌 )  →  ( 𝑇 ‘ 𝑂 )  =   1  ) | 
						
							| 38 | 17 36 37 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑂 )  =   1  ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ 𝑂 )  =   1  ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·  ( 𝑇 ‘ 𝑂 ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·   1  ) ) | 
						
							| 41 | 35 40 | eqtr2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·   1  )  =  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·   1  ) )  =  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) ) | 
						
							| 43 | 42 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·   1  ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) )  ·   1  ) ) ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) ) ) ) | 
						
							| 45 | 16 44 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐻  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) ) ) ) |