Metamath Proof Explorer


Theorem cpmidpmatlem1

Description: Lemma 1 for cpmidpmat . (Contributed by AV, 13-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmidgsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmidgsum.p 𝑃 = ( Poly1𝑅 )
cpmidgsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmidgsum.x 𝑋 = ( var1𝑅 )
cpmidgsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmidgsum.m · = ( ·𝑠𝑌 )
cpmidgsum.1 1 = ( 1r𝑌 )
cpmidgsum.u 𝑈 = ( algSc ‘ 𝑃 )
cpmidgsum.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
cpmidgsum.k 𝐾 = ( 𝐶𝑀 )
cpmidgsum.h 𝐻 = ( 𝐾 · 1 )
cpmidgsumm2pm.o 𝑂 = ( 1r𝐴 )
cpmidgsumm2pm.m = ( ·𝑠𝐴 )
cpmidgsumm2pm.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cpmidpmat.g 𝐺 = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑘 ) 𝑂 ) )
Assertion cpmidpmatlem1 ( 𝐿 ∈ ℕ0 → ( 𝐺𝐿 ) = ( ( ( coe1𝐾 ) ‘ 𝐿 ) 𝑂 ) )

Proof

Step Hyp Ref Expression
1 cpmidgsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmidgsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmidgsum.p 𝑃 = ( Poly1𝑅 )
4 cpmidgsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmidgsum.x 𝑋 = ( var1𝑅 )
6 cpmidgsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
7 cpmidgsum.m · = ( ·𝑠𝑌 )
8 cpmidgsum.1 1 = ( 1r𝑌 )
9 cpmidgsum.u 𝑈 = ( algSc ‘ 𝑃 )
10 cpmidgsum.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
11 cpmidgsum.k 𝐾 = ( 𝐶𝑀 )
12 cpmidgsum.h 𝐻 = ( 𝐾 · 1 )
13 cpmidgsumm2pm.o 𝑂 = ( 1r𝐴 )
14 cpmidgsumm2pm.m = ( ·𝑠𝐴 )
15 cpmidgsumm2pm.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
16 cpmidpmat.g 𝐺 = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑘 ) 𝑂 ) )
17 fveq2 ( 𝑘 = 𝐿 → ( ( coe1𝐾 ) ‘ 𝑘 ) = ( ( coe1𝐾 ) ‘ 𝐿 ) )
18 17 oveq1d ( 𝑘 = 𝐿 → ( ( ( coe1𝐾 ) ‘ 𝑘 ) 𝑂 ) = ( ( ( coe1𝐾 ) ‘ 𝐿 ) 𝑂 ) )
19 ovex ( ( ( coe1𝐾 ) ‘ 𝐿 ) 𝑂 ) ∈ V
20 18 16 19 fvmpt ( 𝐿 ∈ ℕ0 → ( 𝐺𝐿 ) = ( ( ( coe1𝐾 ) ‘ 𝐿 ) 𝑂 ) )