| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmidgsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmidgsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmidgsum.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmidgsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 6 |  | cpmidgsum.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 7 |  | cpmidgsum.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 8 |  | cpmidgsum.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 9 |  | cpmidgsum.u | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 10 |  | cpmidgsum.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 11 |  | cpmidgsum.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 12 |  | cpmidgsum.h | ⊢ 𝐻  =  ( 𝐾  ·   1  ) | 
						
							| 13 |  | cpmidgsumm2pm.o | ⊢ 𝑂  =  ( 1r ‘ 𝐴 ) | 
						
							| 14 |  | cpmidgsumm2pm.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 15 |  | cpmidgsumm2pm.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 16 |  | cpmidpmat.g | ⊢ 𝐺  =  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑘  =  𝐿  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝐾 ) ‘ 𝐿 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝑘  =  𝐿  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝐿 )  ∗  𝑂 ) ) | 
						
							| 19 |  | ovex | ⊢ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝐿 )  ∗  𝑂 )  ∈  V | 
						
							| 20 | 18 16 19 | fvmpt | ⊢ ( 𝐿  ∈  ℕ0  →  ( 𝐺 ‘ 𝐿 )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝐿 )  ∗  𝑂 ) ) |