| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmidgsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmidgsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmidgsum.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmidgsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 6 |  | cpmidgsum.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 7 |  | cpmidgsum.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 8 |  | cpmidgsum.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 9 |  | cpmidgsum.u | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 10 |  | cpmidgsum.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 11 |  | cpmidgsum.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 12 |  | cpmidgsum.h | ⊢ 𝐻  =  ( 𝐾  ·   1  ) | 
						
							| 13 |  | cpmidgsumm2pm.o | ⊢ 𝑂  =  ( 1r ‘ 𝐴 ) | 
						
							| 14 |  | cpmidgsumm2pm.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 15 |  | cpmidgsumm2pm.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 16 |  | cpmidpmat.g | ⊢ 𝐺  =  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) | 
						
							| 17 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 18 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 22 | 10 1 2 3 21 | chpmatply1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 23 | 11 22 | eqeltrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐾  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 24 |  | eqid | ⊢ ( coe1 ‘ 𝐾 )  =  ( coe1 ‘ 𝐾 ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 26 | 24 21 3 25 | coe1fvalcl | ⊢ ( ( 𝐾  ∈  ( Base ‘ 𝑃 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 27 | 23 26 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 28 | 18 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 29 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 30 | 2 13 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →  𝑂  ∈  𝐵 ) | 
						
							| 31 | 28 29 30 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑂  ∈  𝐵 ) | 
						
							| 32 | 31 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑂  ∈  𝐵 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑂  ∈  𝐵 ) | 
						
							| 34 | 25 1 2 14 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑂  ∈  𝐵 ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 )  ∈  𝐵 ) | 
						
							| 35 | 17 20 27 33 34 | syl22anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 )  ∈  𝐵 ) | 
						
							| 36 | 35 16 | fmptd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐺 : ℕ0 ⟶ 𝐵 ) | 
						
							| 37 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 38 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 39 | 37 38 | pm3.2i | ⊢ ( 𝐵  ∈  V  ∧  ℕ0  ∈  V ) | 
						
							| 40 |  | elmapg | ⊢ ( ( 𝐵  ∈  V  ∧  ℕ0  ∈  V )  →  ( 𝐺  ∈  ( 𝐵  ↑m  ℕ0 )  ↔  𝐺 : ℕ0 ⟶ 𝐵 ) ) | 
						
							| 41 | 39 40 | mp1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐺  ∈  ( 𝐵  ↑m  ℕ0 )  ↔  𝐺 : ℕ0 ⟶ 𝐵 ) ) | 
						
							| 42 | 36 41 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐺  ∈  ( 𝐵  ↑m  ℕ0 ) ) |