Metamath Proof Explorer


Theorem cpmidpmatlem2

Description: Lemma 2 for cpmidpmat . (Contributed by AV, 14-Nov-2019) (Proof shortened by AV, 7-Dec-2019)

Ref Expression
Hypotheses cpmidgsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmidgsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmidgsum.p 𝑃 = ( Poly1𝑅 )
cpmidgsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmidgsum.x 𝑋 = ( var1𝑅 )
cpmidgsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmidgsum.m · = ( ·𝑠𝑌 )
cpmidgsum.1 1 = ( 1r𝑌 )
cpmidgsum.u 𝑈 = ( algSc ‘ 𝑃 )
cpmidgsum.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
cpmidgsum.k 𝐾 = ( 𝐶𝑀 )
cpmidgsum.h 𝐻 = ( 𝐾 · 1 )
cpmidgsumm2pm.o 𝑂 = ( 1r𝐴 )
cpmidgsumm2pm.m = ( ·𝑠𝐴 )
cpmidgsumm2pm.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cpmidpmat.g 𝐺 = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑘 ) 𝑂 ) )
Assertion cpmidpmatlem2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐺 ∈ ( 𝐵m0 ) )

Proof

Step Hyp Ref Expression
1 cpmidgsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmidgsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmidgsum.p 𝑃 = ( Poly1𝑅 )
4 cpmidgsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmidgsum.x 𝑋 = ( var1𝑅 )
6 cpmidgsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
7 cpmidgsum.m · = ( ·𝑠𝑌 )
8 cpmidgsum.1 1 = ( 1r𝑌 )
9 cpmidgsum.u 𝑈 = ( algSc ‘ 𝑃 )
10 cpmidgsum.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
11 cpmidgsum.k 𝐾 = ( 𝐶𝑀 )
12 cpmidgsum.h 𝐻 = ( 𝐾 · 1 )
13 cpmidgsumm2pm.o 𝑂 = ( 1r𝐴 )
14 cpmidgsumm2pm.m = ( ·𝑠𝐴 )
15 cpmidgsumm2pm.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
16 cpmidpmat.g 𝐺 = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑘 ) 𝑂 ) )
17 simpl1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ Fin )
18 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
19 18 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑅 ∈ Ring )
20 19 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring )
21 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
22 10 1 2 3 21 chpmatply1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐶𝑀 ) ∈ ( Base ‘ 𝑃 ) )
23 11 22 eqeltrid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐾 ∈ ( Base ‘ 𝑃 ) )
24 eqid ( coe1𝐾 ) = ( coe1𝐾 )
25 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
26 24 21 3 25 coe1fvalcl ( ( 𝐾 ∈ ( Base ‘ 𝑃 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) )
27 23 26 sylan ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) )
28 18 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
29 1 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
30 2 13 ringidcl ( 𝐴 ∈ Ring → 𝑂𝐵 )
31 28 29 30 3syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑂𝐵 )
32 31 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑂𝐵 )
33 32 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑂𝐵 )
34 25 1 2 14 matvscl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( ( ( coe1𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑂𝐵 ) ) → ( ( ( coe1𝐾 ) ‘ 𝑘 ) 𝑂 ) ∈ 𝐵 )
35 17 20 27 33 34 syl22anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1𝐾 ) ‘ 𝑘 ) 𝑂 ) ∈ 𝐵 )
36 35 16 fmptd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐺 : ℕ0𝐵 )
37 2 fvexi 𝐵 ∈ V
38 nn0ex 0 ∈ V
39 37 38 pm3.2i ( 𝐵 ∈ V ∧ ℕ0 ∈ V )
40 elmapg ( ( 𝐵 ∈ V ∧ ℕ0 ∈ V ) → ( 𝐺 ∈ ( 𝐵m0 ) ↔ 𝐺 : ℕ0𝐵 ) )
41 39 40 mp1i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐺 ∈ ( 𝐵m0 ) ↔ 𝐺 : ℕ0𝐵 ) )
42 36 41 mpbird ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐺 ∈ ( 𝐵m0 ) )