Step |
Hyp |
Ref |
Expression |
1 |
|
matvscl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
matvscl.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
matvscl.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
matvscl.s |
⊢ · = ( ·𝑠 ‘ 𝐴 ) |
5 |
2
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ LMod ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐴 ∈ LMod ) |
7 |
2
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
9 |
1 8
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
10 |
9
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐶 ∈ 𝐾 ↔ 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
11 |
10
|
biimpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐶 ∈ 𝐾 → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
12 |
11
|
adantrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
14 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
16 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
17 |
3 15 4 16
|
lmodvscl |
⊢ ( ( 𝐴 ∈ LMod ∧ 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐶 · 𝑋 ) ∈ 𝐵 ) |
18 |
6 13 14 17
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝐶 · 𝑋 ) ∈ 𝐵 ) |