Metamath Proof Explorer


Theorem matvscl

Description: Closure of the scalar multiplication in the matrix ring. ( lmodvscl analog.) (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses matvscl.k K=BaseR
matvscl.a A=NMatR
matvscl.b B=BaseA
matvscl.s ·˙=A
Assertion matvscl NFinRRingCKXBC·˙XB

Proof

Step Hyp Ref Expression
1 matvscl.k K=BaseR
2 matvscl.a A=NMatR
3 matvscl.b B=BaseA
4 matvscl.s ·˙=A
5 2 matlmod NFinRRingALMod
6 5 adantr NFinRRingCKXBALMod
7 2 matsca2 NFinRRingR=ScalarA
8 7 fveq2d NFinRRingBaseR=BaseScalarA
9 1 8 eqtrid NFinRRingK=BaseScalarA
10 9 eleq2d NFinRRingCKCBaseScalarA
11 10 biimpd NFinRRingCKCBaseScalarA
12 11 adantrd NFinRRingCKXBCBaseScalarA
13 12 imp NFinRRingCKXBCBaseScalarA
14 simprr NFinRRingCKXBXB
15 eqid ScalarA=ScalarA
16 eqid BaseScalarA=BaseScalarA
17 3 15 4 16 lmodvscl ALModCBaseScalarAXBC·˙XB
18 6 13 14 17 syl3anc NFinRRingCKXBC·˙XB