Metamath Proof Explorer


Theorem matsubg

Description: The matrix ring has the same addition as its underlying group. (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses matsubg.a A=NMatR
matsubg.g G=RfreeLModN×N
Assertion matsubg NFinRV-G=-A

Proof

Step Hyp Ref Expression
1 matsubg.a A=NMatR
2 matsubg.g G=RfreeLModN×N
3 1 2 matbas NFinRVBaseG=BaseA
4 1 2 matplusg NFinRV+G=+A
5 3 4 grpsubpropd NFinRV-G=-A