Metamath Proof Explorer


Theorem matplusgcell

Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses matplusgcell.a A=NMatR
matplusgcell.b B=BaseA
matplusgcell.p ˙=+A
matplusgcell.q +˙=+R
Assertion matplusgcell XBYBINJNIX˙YJ=IXJ+˙IYJ

Proof

Step Hyp Ref Expression
1 matplusgcell.a A=NMatR
2 matplusgcell.b B=BaseA
3 matplusgcell.p ˙=+A
4 matplusgcell.q +˙=+R
5 1 2 3 4 matplusg2 XBYBX˙Y=X+˙fY
6 5 oveqd XBYBIX˙YJ=IX+˙fYJ
7 6 adantr XBYBINJNIX˙YJ=IX+˙fYJ
8 df-ov IX+˙fYJ=X+˙fYIJ
9 8 a1i XBYBINJNIX+˙fYJ=X+˙fYIJ
10 opelxp IJN×NINJN
11 eqid BaseR=BaseR
12 1 11 2 matbas2i XBXBaseRN×N
13 elmapfn XBaseRN×NXFnN×N
14 12 13 syl XBXFnN×N
15 14 adantr XBYBXFnN×N
16 1 11 2 matbas2i YBYBaseRN×N
17 elmapfn YBaseRN×NYFnN×N
18 16 17 syl YBYFnN×N
19 18 adantl XBYBYFnN×N
20 1 2 matrcl XBNFinRV
21 xpfi NFinNFinN×NFin
22 21 anidms NFinN×NFin
23 22 adantr NFinRVN×NFin
24 20 23 syl XBN×NFin
25 24 adantr XBYBN×NFin
26 inidm N×NN×N=N×N
27 df-ov IXJ=XIJ
28 27 eqcomi XIJ=IXJ
29 28 a1i XBYBIJN×NXIJ=IXJ
30 df-ov IYJ=YIJ
31 30 eqcomi YIJ=IYJ
32 31 a1i XBYBIJN×NYIJ=IYJ
33 15 19 25 25 26 29 32 ofval XBYBIJN×NX+˙fYIJ=IXJ+˙IYJ
34 10 33 sylan2br XBYBINJNX+˙fYIJ=IXJ+˙IYJ
35 7 9 34 3eqtrd XBYBINJNIX˙YJ=IXJ+˙IYJ