Metamath Proof Explorer


Theorem matsubgcell

Description: Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses matplusgcell.a A=NMatR
matplusgcell.b B=BaseA
matsubgcell.s S=-A
matsubgcell.m -˙=-R
Assertion matsubgcell RRingXBYBINJNIXSYJ=IXJ-˙IYJ

Proof

Step Hyp Ref Expression
1 matplusgcell.a A=NMatR
2 matplusgcell.b B=BaseA
3 matsubgcell.s S=-A
4 matsubgcell.m -˙=-R
5 1 2 matrcl XBNFinRV
6 5 simpld XBNFin
7 6 adantr XBYBNFin
8 7 3ad2ant2 RRingXBYBINJNNFin
9 simp1 RRingXBYBINJNRRing
10 eqid RfreeLModN×N=RfreeLModN×N
11 1 10 matsubg NFinRRing-RfreeLModN×N=-A
12 8 9 11 syl2anc RRingXBYBINJN-RfreeLModN×N=-A
13 3 12 eqtr4id RRingXBYBINJNS=-RfreeLModN×N
14 13 oveqd RRingXBYBINJNXSY=X-RfreeLModN×NY
15 eqid BaseRfreeLModN×N=BaseRfreeLModN×N
16 xpfi NFinNFinN×NFin
17 16 anidms NFinN×NFin
18 17 adantr NFinRVN×NFin
19 5 18 syl XBN×NFin
20 19 adantr XBYBN×NFin
21 20 3ad2ant2 RRingXBYBINJNN×NFin
22 2 eleq2i XBXBaseA
23 22 biimpi XBXBaseA
24 1 10 matbas NFinRVBaseRfreeLModN×N=BaseA
25 5 24 syl XBBaseRfreeLModN×N=BaseA
26 23 25 eleqtrrd XBXBaseRfreeLModN×N
27 26 adantr XBYBXBaseRfreeLModN×N
28 27 3ad2ant2 RRingXBYBINJNXBaseRfreeLModN×N
29 2 eleq2i YBYBaseA
30 29 biimpi YBYBaseA
31 1 2 matrcl YBNFinRV
32 31 24 syl YBBaseRfreeLModN×N=BaseA
33 30 32 eleqtrrd YBYBaseRfreeLModN×N
34 33 adantl XBYBYBaseRfreeLModN×N
35 34 3ad2ant2 RRingXBYBINJNYBaseRfreeLModN×N
36 eqid -RfreeLModN×N=-RfreeLModN×N
37 10 15 9 21 28 35 4 36 frlmsubgval RRingXBYBINJNX-RfreeLModN×NY=X-˙fY
38 14 37 eqtrd RRingXBYBINJNXSY=X-˙fY
39 38 oveqd RRingXBYBINJNIXSYJ=IX-˙fYJ
40 df-ov IX-˙fYJ=X-˙fYIJ
41 opelxpi INJNIJN×N
42 41 anim2i XBYBINJNXBYBIJN×N
43 42 3adant1 RRingXBYBINJNXBYBIJN×N
44 eqid BaseR=BaseR
45 1 44 2 matbas2i XBXBaseRN×N
46 elmapfn XBaseRN×NXFnN×N
47 45 46 syl XBXFnN×N
48 47 adantr XBYBXFnN×N
49 1 44 2 matbas2i YBYBaseRN×N
50 elmapfn YBaseRN×NYFnN×N
51 49 50 syl YBYFnN×N
52 51 adantl XBYBYFnN×N
53 inidm N×NN×N=N×N
54 df-ov IXJ=XIJ
55 54 eqcomi XIJ=IXJ
56 55 a1i XBYBIJN×NXIJ=IXJ
57 df-ov IYJ=YIJ
58 57 eqcomi YIJ=IYJ
59 58 a1i XBYBIJN×NYIJ=IYJ
60 48 52 20 20 53 56 59 ofval XBYBIJN×NX-˙fYIJ=IXJ-˙IYJ
61 43 60 syl RRingXBYBINJNX-˙fYIJ=IXJ-˙IYJ
62 40 61 eqtrid RRingXBYBINJNIX-˙fYJ=IXJ-˙IYJ
63 39 62 eqtrd RRingXBYBINJNIXSYJ=IXJ-˙IYJ