Metamath Proof Explorer


Theorem matinvgcell

Description: Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019)

Ref Expression
Hypotheses matplusgcell.a A = N Mat R
matplusgcell.b B = Base A
matinvgcell.v V = inv g R
matinvgcell.w W = inv g A
Assertion matinvgcell R Ring X B I N J N I W X J = V I X J

Proof

Step Hyp Ref Expression
1 matplusgcell.a A = N Mat R
2 matplusgcell.b B = Base A
3 matinvgcell.v V = inv g R
4 matinvgcell.w W = inv g A
5 1 2 matrcl X B N Fin R V
6 5 simpld X B N Fin
7 simpl R Ring X B R Ring
8 1 matgrp N Fin R Ring A Grp
9 6 7 8 syl2an2 R Ring X B A Grp
10 eqid 0 A = 0 A
11 2 10 grpidcl A Grp 0 A B
12 9 11 syl R Ring X B 0 A B
13 simpr R Ring X B X B
14 12 13 jca R Ring X B 0 A B X B
15 14 3adant3 R Ring X B I N J N 0 A B X B
16 eqid - A = - A
17 eqid - R = - R
18 1 2 16 17 matsubgcell R Ring 0 A B X B I N J N I 0 A - A X J = I 0 A J - R I X J
19 15 18 syld3an2 R Ring X B I N J N I 0 A - A X J = I 0 A J - R I X J
20 2 16 4 10 grpinvval2 A Grp X B W X = 0 A - A X
21 9 13 20 syl2anc R Ring X B W X = 0 A - A X
22 21 3adant3 R Ring X B I N J N W X = 0 A - A X
23 22 oveqd R Ring X B I N J N I W X J = I 0 A - A X J
24 ringgrp R Ring R Grp
25 24 3ad2ant1 R Ring X B I N J N R Grp
26 simp3 R Ring X B I N J N I N J N
27 2 eleq2i X B X Base A
28 27 biimpi X B X Base A
29 28 3ad2ant2 R Ring X B I N J N X Base A
30 df-3an I N J N X Base A I N J N X Base A
31 26 29 30 sylanbrc R Ring X B I N J N I N J N X Base A
32 eqid Base R = Base R
33 1 32 matecl I N J N X Base A I X J Base R
34 31 33 syl R Ring X B I N J N I X J Base R
35 eqid 0 R = 0 R
36 32 17 3 35 grpinvval2 R Grp I X J Base R V I X J = 0 R - R I X J
37 25 34 36 syl2anc R Ring X B I N J N V I X J = 0 R - R I X J
38 6 anim1i X B R Ring N Fin R Ring
39 38 ancoms R Ring X B N Fin R Ring
40 1 35 mat0op N Fin R Ring 0 A = x N , y N 0 R
41 39 40 syl R Ring X B 0 A = x N , y N 0 R
42 41 3adant3 R Ring X B I N J N 0 A = x N , y N 0 R
43 eqidd R Ring X B I N J N x = I y = J 0 R = 0 R
44 26 simpld R Ring X B I N J N I N
45 simp3r R Ring X B I N J N J N
46 fvexd R Ring X B I N J N 0 R V
47 42 43 44 45 46 ovmpod R Ring X B I N J N I 0 A J = 0 R
48 47 eqcomd R Ring X B I N J N 0 R = I 0 A J
49 48 oveq1d R Ring X B I N J N 0 R - R I X J = I 0 A J - R I X J
50 37 49 eqtrd R Ring X B I N J N V I X J = I 0 A J - R I X J
51 19 23 50 3eqtr4d R Ring X B I N J N I W X J = V I X J