| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matplusgcell.a |
|
| 2 |
|
matplusgcell.b |
|
| 3 |
|
matinvgcell.v |
|
| 4 |
|
matinvgcell.w |
|
| 5 |
1 2
|
matrcl |
|
| 6 |
5
|
simpld |
|
| 7 |
|
simpl |
|
| 8 |
1
|
matgrp |
|
| 9 |
6 7 8
|
syl2an2 |
|
| 10 |
|
eqid |
|
| 11 |
2 10
|
grpidcl |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
simpr |
|
| 14 |
12 13
|
jca |
|
| 15 |
14
|
3adant3 |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
1 2 16 17
|
matsubgcell |
|
| 19 |
15 18
|
syld3an2 |
|
| 20 |
2 16 4 10
|
grpinvval2 |
|
| 21 |
9 13 20
|
syl2anc |
|
| 22 |
21
|
3adant3 |
|
| 23 |
22
|
oveqd |
|
| 24 |
|
ringgrp |
|
| 25 |
24
|
3ad2ant1 |
|
| 26 |
|
simp3 |
|
| 27 |
2
|
eleq2i |
|
| 28 |
27
|
biimpi |
|
| 29 |
28
|
3ad2ant2 |
|
| 30 |
|
df-3an |
|
| 31 |
26 29 30
|
sylanbrc |
|
| 32 |
|
eqid |
|
| 33 |
1 32
|
matecl |
|
| 34 |
31 33
|
syl |
|
| 35 |
|
eqid |
|
| 36 |
32 17 3 35
|
grpinvval2 |
|
| 37 |
25 34 36
|
syl2anc |
|
| 38 |
6
|
anim1i |
|
| 39 |
38
|
ancoms |
|
| 40 |
1 35
|
mat0op |
|
| 41 |
39 40
|
syl |
|
| 42 |
41
|
3adant3 |
|
| 43 |
|
eqidd |
|
| 44 |
26
|
simpld |
|
| 45 |
|
simp3r |
|
| 46 |
|
fvexd |
|
| 47 |
42 43 44 45 46
|
ovmpod |
|
| 48 |
47
|
eqcomd |
|
| 49 |
48
|
oveq1d |
|
| 50 |
37 49
|
eqtrd |
|
| 51 |
19 23 50
|
3eqtr4d |
|