Step |
Hyp |
Ref |
Expression |
1 |
|
matvscl.k |
|- K = ( Base ` R ) |
2 |
|
matvscl.a |
|- A = ( N Mat R ) |
3 |
|
matvscl.b |
|- B = ( Base ` A ) |
4 |
|
matvscl.s |
|- .x. = ( .s ` A ) |
5 |
2
|
matlmod |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |
6 |
5
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( C e. K /\ X e. B ) ) -> A e. LMod ) |
7 |
2
|
matsca2 |
|- ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) |
8 |
7
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` R ) = ( Base ` ( Scalar ` A ) ) ) |
9 |
1 8
|
eqtrid |
|- ( ( N e. Fin /\ R e. Ring ) -> K = ( Base ` ( Scalar ` A ) ) ) |
10 |
9
|
eleq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( C e. K <-> C e. ( Base ` ( Scalar ` A ) ) ) ) |
11 |
10
|
biimpd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( C e. K -> C e. ( Base ` ( Scalar ` A ) ) ) ) |
12 |
11
|
adantrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( C e. K /\ X e. B ) -> C e. ( Base ` ( Scalar ` A ) ) ) ) |
13 |
12
|
imp |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( C e. K /\ X e. B ) ) -> C e. ( Base ` ( Scalar ` A ) ) ) |
14 |
|
simprr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( C e. K /\ X e. B ) ) -> X e. B ) |
15 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
16 |
|
eqid |
|- ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) |
17 |
3 15 4 16
|
lmodvscl |
|- ( ( A e. LMod /\ C e. ( Base ` ( Scalar ` A ) ) /\ X e. B ) -> ( C .x. X ) e. B ) |
18 |
6 13 14 17
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( C e. K /\ X e. B ) ) -> ( C .x. X ) e. B ) |