Description: Lemma 2 for cpmidpmat . (Contributed by AV, 14-Nov-2019) (Proof shortened by AV, 7-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cpmidgsum.a | |
|
cpmidgsum.b | |
||
cpmidgsum.p | |
||
cpmidgsum.y | |
||
cpmidgsum.x | |
||
cpmidgsum.e | |
||
cpmidgsum.m | |
||
cpmidgsum.1 | |
||
cpmidgsum.u | |
||
cpmidgsum.c | |
||
cpmidgsum.k | |
||
cpmidgsum.h | |
||
cpmidgsumm2pm.o | |
||
cpmidgsumm2pm.m | |
||
cpmidgsumm2pm.t | |
||
cpmidpmat.g | |
||
Assertion | cpmidpmatlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmidgsum.a | |
|
2 | cpmidgsum.b | |
|
3 | cpmidgsum.p | |
|
4 | cpmidgsum.y | |
|
5 | cpmidgsum.x | |
|
6 | cpmidgsum.e | |
|
7 | cpmidgsum.m | |
|
8 | cpmidgsum.1 | |
|
9 | cpmidgsum.u | |
|
10 | cpmidgsum.c | |
|
11 | cpmidgsum.k | |
|
12 | cpmidgsum.h | |
|
13 | cpmidgsumm2pm.o | |
|
14 | cpmidgsumm2pm.m | |
|
15 | cpmidgsumm2pm.t | |
|
16 | cpmidpmat.g | |
|
17 | simpl1 | |
|
18 | crngring | |
|
19 | 18 | 3ad2ant2 | |
20 | 19 | adantr | |
21 | eqid | |
|
22 | 10 1 2 3 21 | chpmatply1 | |
23 | 11 22 | eqeltrid | |
24 | eqid | |
|
25 | eqid | |
|
26 | 24 21 3 25 | coe1fvalcl | |
27 | 23 26 | sylan | |
28 | 18 | anim2i | |
29 | 1 | matring | |
30 | 2 13 | ringidcl | |
31 | 28 29 30 | 3syl | |
32 | 31 | 3adant3 | |
33 | 32 | adantr | |
34 | 25 1 2 14 | matvscl | |
35 | 17 20 27 33 34 | syl22anc | |
36 | 35 16 | fmptd | |
37 | 2 | fvexi | |
38 | nn0ex | |
|
39 | 37 38 | pm3.2i | |
40 | elmapg | |
|
41 | 39 40 | mp1i | |
42 | 36 41 | mpbird | |