Metamath Proof Explorer


Theorem cpmidpmatlem2

Description: Lemma 2 for cpmidpmat . (Contributed by AV, 14-Nov-2019) (Proof shortened by AV, 7-Dec-2019)

Ref Expression
Hypotheses cpmidgsum.a A=NMatR
cpmidgsum.b B=BaseA
cpmidgsum.p P=Poly1R
cpmidgsum.y Y=NMatP
cpmidgsum.x X=var1R
cpmidgsum.e ×˙=mulGrpP
cpmidgsum.m ·˙=Y
cpmidgsum.1 1˙=1Y
cpmidgsum.u U=algScP
cpmidgsum.c C=NCharPlyMatR
cpmidgsum.k K=CM
cpmidgsum.h H=K·˙1˙
cpmidgsumm2pm.o O=1A
cpmidgsumm2pm.m ˙=A
cpmidgsumm2pm.t T=NmatToPolyMatR
cpmidpmat.g G=k0coe1Kk˙O
Assertion cpmidpmatlem2 NFinRCRingMBGB0

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A=NMatR
2 cpmidgsum.b B=BaseA
3 cpmidgsum.p P=Poly1R
4 cpmidgsum.y Y=NMatP
5 cpmidgsum.x X=var1R
6 cpmidgsum.e ×˙=mulGrpP
7 cpmidgsum.m ·˙=Y
8 cpmidgsum.1 1˙=1Y
9 cpmidgsum.u U=algScP
10 cpmidgsum.c C=NCharPlyMatR
11 cpmidgsum.k K=CM
12 cpmidgsum.h H=K·˙1˙
13 cpmidgsumm2pm.o O=1A
14 cpmidgsumm2pm.m ˙=A
15 cpmidgsumm2pm.t T=NmatToPolyMatR
16 cpmidpmat.g G=k0coe1Kk˙O
17 simpl1 NFinRCRingMBk0NFin
18 crngring RCRingRRing
19 18 3ad2ant2 NFinRCRingMBRRing
20 19 adantr NFinRCRingMBk0RRing
21 eqid BaseP=BaseP
22 10 1 2 3 21 chpmatply1 NFinRCRingMBCMBaseP
23 11 22 eqeltrid NFinRCRingMBKBaseP
24 eqid coe1K=coe1K
25 eqid BaseR=BaseR
26 24 21 3 25 coe1fvalcl KBasePk0coe1KkBaseR
27 23 26 sylan NFinRCRingMBk0coe1KkBaseR
28 18 anim2i NFinRCRingNFinRRing
29 1 matring NFinRRingARing
30 2 13 ringidcl ARingOB
31 28 29 30 3syl NFinRCRingOB
32 31 3adant3 NFinRCRingMBOB
33 32 adantr NFinRCRingMBk0OB
34 25 1 2 14 matvscl NFinRRingcoe1KkBaseROBcoe1Kk˙OB
35 17 20 27 33 34 syl22anc NFinRCRingMBk0coe1Kk˙OB
36 35 16 fmptd NFinRCRingMBG:0B
37 2 fvexi BV
38 nn0ex 0V
39 37 38 pm3.2i BV0V
40 elmapg BV0VGB0G:0B
41 39 40 mp1i NFinRCRingMBGB0G:0B
42 36 41 mpbird NFinRCRingMBGB0