Metamath Proof Explorer


Definition df-chpmat

Description: Define the characteristic polynomial of a square matrix. According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial ): "The characteristic polynomial of [an n x n matrix] A, denoted by p_A(t), is the polynomial defined by p_A ( t ) = det ( t I - A ) where I denotes the n-by-n identity matrix.". In addition, however, the underlying ring must be commutative, see definition in Lang, p. 561: " Let k be a commutative ring ... Let M be any n x n matrix in k ... We define the characteristic polynomial P_M(t) to be the determinant det ( t I_n - M ) where I_n is the unit n x n matrix." To be more precise, the matrices A and I on the right hand side are matrices with coefficients of a polynomial ring. Therefore, the original matrix A over a given commutative ring must be transformed into corresponding matrices over the polynomial ring over the given ring. (Contributed by AV, 2-Aug-2019)

Ref Expression
Assertion df-chpmat CharPlyMat=nFin,rVmBasenMatrnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm

Detailed syntax breakdown

Step Hyp Ref Expression
0 cchpmat classCharPlyMat
1 vn setvarn
2 cfn classFin
3 vr setvarr
4 cvv classV
5 vm setvarm
6 cbs classBase
7 1 cv setvarn
8 cmat classMat
9 3 cv setvarr
10 7 9 8 co classnMatr
11 10 6 cfv classBasenMatr
12 cmdat classmaDet
13 cpl1 classPoly1
14 9 13 cfv classPoly1r
15 7 14 12 co classnmaDetPoly1r
16 cv1 classvar1
17 9 16 cfv classvar1r
18 cvsca class𝑠
19 7 14 8 co classnMatPoly1r
20 19 18 cfv classnMatPoly1r
21 cur class1r
22 19 21 cfv class1nMatPoly1r
23 17 22 20 co classvar1rnMatPoly1r1nMatPoly1r
24 csg class-𝑔
25 19 24 cfv class-nMatPoly1r
26 cmat2pmat classmatToPolyMat
27 7 9 26 co classnmatToPolyMatr
28 5 cv setvarm
29 28 27 cfv classnmatToPolyMatrm
30 23 29 25 co classvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm
31 30 15 cfv classnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm
32 5 11 31 cmpt classmBasenMatrnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm
33 1 3 2 4 32 cmpo classnFin,rVmBasenMatrnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm
34 0 33 wceq wffCharPlyMat=nFin,rVmBasenMatrnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm