| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cchpmat | ⊢  CharPlyMat | 
						
							| 1 |  | vn | ⊢ 𝑛 | 
						
							| 2 |  | cfn | ⊢ Fin | 
						
							| 3 |  | vr | ⊢ 𝑟 | 
						
							| 4 |  | cvv | ⊢ V | 
						
							| 5 |  | vm | ⊢ 𝑚 | 
						
							| 6 |  | cbs | ⊢ Base | 
						
							| 7 | 1 | cv | ⊢ 𝑛 | 
						
							| 8 |  | cmat | ⊢  Mat | 
						
							| 9 | 3 | cv | ⊢ 𝑟 | 
						
							| 10 | 7 9 8 | co | ⊢ ( 𝑛  Mat  𝑟 ) | 
						
							| 11 | 10 6 | cfv | ⊢ ( Base ‘ ( 𝑛  Mat  𝑟 ) ) | 
						
							| 12 |  | cmdat | ⊢  maDet | 
						
							| 13 |  | cpl1 | ⊢ Poly1 | 
						
							| 14 | 9 13 | cfv | ⊢ ( Poly1 ‘ 𝑟 ) | 
						
							| 15 | 7 14 12 | co | ⊢ ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) | 
						
							| 16 |  | cv1 | ⊢ var1 | 
						
							| 17 | 9 16 | cfv | ⊢ ( var1 ‘ 𝑟 ) | 
						
							| 18 |  | cvsca | ⊢  ·𝑠 | 
						
							| 19 | 7 14 8 | co | ⊢ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) | 
						
							| 20 | 19 18 | cfv | ⊢ (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) | 
						
							| 21 |  | cur | ⊢ 1r | 
						
							| 22 | 19 21 | cfv | ⊢ ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) | 
						
							| 23 | 17 22 20 | co | ⊢ ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) | 
						
							| 24 |  | csg | ⊢ -g | 
						
							| 25 | 19 24 | cfv | ⊢ ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) | 
						
							| 26 |  | cmat2pmat | ⊢  matToPolyMat | 
						
							| 27 | 7 9 26 | co | ⊢ ( 𝑛  matToPolyMat  𝑟 ) | 
						
							| 28 | 5 | cv | ⊢ 𝑚 | 
						
							| 29 | 28 27 | cfv | ⊢ ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) | 
						
							| 30 | 23 29 25 | co | ⊢ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) | 
						
							| 31 | 30 15 | cfv | ⊢ ( ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) ) | 
						
							| 32 | 5 11 31 | cmpt | ⊢ ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ↦  ( ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) ) ) | 
						
							| 33 | 1 3 2 4 32 | cmpo | ⊢ ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ↦  ( ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 34 | 0 33 | wceq | ⊢  CharPlyMat   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ↦  ( ( 𝑛  maDet  ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) (  ·𝑠  ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛  matToPolyMat  𝑟 ) ‘ 𝑚 ) ) ) ) ) |