| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chmatcl.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
chmatcl.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
chmatcl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 4 |
|
chmatcl.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
| 5 |
|
chmatcl.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 6 |
|
chmatcl.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 7 |
|
chmatcl.s |
⊢ − = ( -g ‘ 𝑌 ) |
| 8 |
|
chmatcl.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
| 9 |
|
chmatcl.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
| 10 |
|
chmatcl.h |
⊢ 𝐻 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) |
| 11 |
3 4
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
| 12 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Grp ) |
| 14 |
13
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Grp ) |
| 15 |
3
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 16 |
15
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
| 17 |
16
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 19 |
5 3 18
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 20 |
19
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 21 |
11
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 23 |
22 9
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → 1 ∈ ( Base ‘ 𝑌 ) ) |
| 24 |
21 23
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝑌 ) ) |
| 25 |
18 4 22 8
|
matvscl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ∧ ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 1 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
| 26 |
17 20 24 25
|
syl12anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
| 27 |
6 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
| 28 |
22 7
|
grpsubcl |
⊢ ( ( 𝑌 ∈ Grp ∧ ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 29 |
14 26 27 28
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 30 |
10 29
|
eqeltrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝐻 ∈ ( Base ‘ 𝑌 ) ) |