| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chmatcl.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | chmatcl.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | chmatcl.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | chmatcl.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | chmatcl.x |  |-  X = ( var1 ` R ) | 
						
							| 6 |  | chmatcl.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 7 |  | chmatcl.s |  |-  .- = ( -g ` Y ) | 
						
							| 8 |  | chmatcl.m |  |-  .x. = ( .s ` Y ) | 
						
							| 9 |  | chmatcl.1 |  |-  .1. = ( 1r ` Y ) | 
						
							| 10 |  | chmatcl.h |  |-  H = ( ( X .x. .1. ) .- ( T ` M ) ) | 
						
							| 11 | 3 4 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> Y e. Ring ) | 
						
							| 12 |  | ringgrp |  |-  ( Y e. Ring -> Y e. Grp ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Y e. Grp ) | 
						
							| 14 | 13 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Y e. Grp ) | 
						
							| 15 | 3 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 16 | 15 | anim2i |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( N e. Fin /\ P e. Ring ) ) | 
						
							| 17 | 16 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( N e. Fin /\ P e. Ring ) ) | 
						
							| 18 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 19 | 5 3 18 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 20 | 19 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> X e. ( Base ` P ) ) | 
						
							| 21 | 11 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Y e. Ring ) | 
						
							| 22 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 23 | 22 9 | ringidcl |  |-  ( Y e. Ring -> .1. e. ( Base ` Y ) ) | 
						
							| 24 | 21 23 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> .1. e. ( Base ` Y ) ) | 
						
							| 25 | 18 4 22 8 | matvscl |  |-  ( ( ( N e. Fin /\ P e. Ring ) /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Y ) ) ) -> ( X .x. .1. ) e. ( Base ` Y ) ) | 
						
							| 26 | 17 20 24 25 | syl12anc |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Y ) ) | 
						
							| 27 | 6 1 2 3 4 | mat2pmatbas |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Y ) ) | 
						
							| 28 | 22 7 | grpsubcl |  |-  ( ( Y e. Grp /\ ( X .x. .1. ) e. ( Base ` Y ) /\ ( T ` M ) e. ( Base ` Y ) ) -> ( ( X .x. .1. ) .- ( T ` M ) ) e. ( Base ` Y ) ) | 
						
							| 29 | 14 26 27 28 | syl3anc |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X .x. .1. ) .- ( T ` M ) ) e. ( Base ` Y ) ) | 
						
							| 30 | 10 29 | eqeltrid |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> H e. ( Base ` Y ) ) |