| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1ring.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 3 |
1 2
|
ply1bas |
|- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 4 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
| 5 |
1 4 2
|
ply1subrg |
|- ( R e. Ring -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 6 |
3 5
|
eqeltrrid |
|- ( R e. Ring -> ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 7 |
1 4
|
ply1val |
|- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 8 |
7
|
subrgring |
|- ( ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) -> P e. Ring ) |
| 9 |
6 8
|
syl |
|- ( R e. Ring -> P e. Ring ) |