Metamath Proof Explorer


Theorem mat2pmatbas

Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 1-Aug-2019)

Ref Expression
Hypotheses mat2pmatbas.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
mat2pmatbas.a 𝐴 = ( 𝑁 Mat 𝑅 )
mat2pmatbas.b 𝐵 = ( Base ‘ 𝐴 )
mat2pmatbas.p 𝑃 = ( Poly1𝑅 )
mat2pmatbas.c 𝐶 = ( 𝑁 Mat 𝑃 )
Assertion mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
2 mat2pmatbas.a 𝐴 = ( 𝑁 Mat 𝑅 )
3 mat2pmatbas.b 𝐵 = ( Base ‘ 𝐴 )
4 mat2pmatbas.p 𝑃 = ( Poly1𝑅 )
5 mat2pmatbas.c 𝐶 = ( 𝑁 Mat 𝑃 )
6 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
7 1 2 3 4 6 mat2pmatval ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) = ( 𝑥𝑁 , 𝑦𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑀 𝑦 ) ) ) )
8 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
9 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
10 simp1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝑁 ∈ Fin )
11 4 fvexi 𝑃 ∈ V
12 11 a1i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝑃 ∈ V )
13 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
14 4 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
15 14 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝑃 ∈ Ring )
16 15 3ad2ant1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → 𝑃 ∈ Ring )
17 4 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
18 17 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝑃 ∈ LMod )
19 18 3ad2ant1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → 𝑃 ∈ LMod )
20 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
21 6 13 16 19 20 8 asclf ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → ( algSc ‘ 𝑃 ) : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) )
22 4 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) )
23 22 fveq2d ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
24 23 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
25 24 3ad2ant1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
26 25 feq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → ( ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ↔ ( algSc ‘ 𝑃 ) : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) )
27 21 26 mpbird ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) )
28 simp2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → 𝑥𝑁 )
29 simp3 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → 𝑦𝑁 )
30 3 eleq2i ( 𝑀𝐵𝑀 ∈ ( Base ‘ 𝐴 ) )
31 30 biimpi ( 𝑀𝐵𝑀 ∈ ( Base ‘ 𝐴 ) )
32 31 3ad2ant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) )
33 32 3ad2ant1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) )
34 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
35 2 34 matecl ( ( 𝑥𝑁𝑦𝑁𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 𝑀 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
36 28 29 33 35 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → ( 𝑥 𝑀 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
37 27 36 ffvelrnd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑥𝑁𝑦𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑀 𝑦 ) ) ∈ ( Base ‘ 𝑃 ) )
38 5 8 9 10 12 37 matbas2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑥𝑁 , 𝑦𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑀 𝑦 ) ) ) ∈ ( Base ‘ 𝐶 ) )
39 7 38 eqeltrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝐶 ) )