| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat2pmatbas.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 2 |
|
mat2pmatbas.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 3 |
|
mat2pmatbas.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 4 |
|
mat2pmatbas.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 5 |
|
mat2pmatbas.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 6 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 7 |
1 2 3 4 6
|
mat2pmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑀 𝑦 ) ) ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 10 |
|
simp1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 11 |
4
|
fvexi |
⊢ 𝑃 ∈ V |
| 12 |
11
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ V ) |
| 13 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 14 |
4
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 15 |
14
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑃 ∈ Ring ) |
| 17 |
4
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ LMod ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑃 ∈ LMod ) |
| 20 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 21 |
6 13 16 19 20 8
|
asclf |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( algSc ‘ 𝑃 ) : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) |
| 22 |
4
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 24 |
23
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 25 |
24
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 26 |
25
|
feq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ↔ ( algSc ‘ 𝑃 ) : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) ) |
| 27 |
21 26
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
| 28 |
|
simp2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑥 ∈ 𝑁 ) |
| 29 |
|
simp3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑦 ∈ 𝑁 ) |
| 30 |
3
|
eleq2i |
⊢ ( 𝑀 ∈ 𝐵 ↔ 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 31 |
30
|
biimpi |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 32 |
31
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 33 |
32
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 34 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 35 |
2 34
|
matecl |
⊢ ( ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 𝑀 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 36 |
28 29 33 35
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( 𝑥 𝑀 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 37 |
27 36
|
ffvelcdmd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑀 𝑦 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 38 |
5 8 9 10 12 37
|
matbas2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑀 𝑦 ) ) ) ∈ ( Base ‘ 𝐶 ) ) |
| 39 |
7 38
|
eqeltrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝐶 ) ) |