Metamath Proof Explorer


Theorem asclf

Description: The algebra scalars function is a function into the base set. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses asclf.a 𝐴 = ( algSc ‘ 𝑊 )
asclf.f 𝐹 = ( Scalar ‘ 𝑊 )
asclf.r ( 𝜑𝑊 ∈ Ring )
asclf.l ( 𝜑𝑊 ∈ LMod )
asclf.k 𝐾 = ( Base ‘ 𝐹 )
asclf.b 𝐵 = ( Base ‘ 𝑊 )
Assertion asclf ( 𝜑𝐴 : 𝐾𝐵 )

Proof

Step Hyp Ref Expression
1 asclf.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclf.f 𝐹 = ( Scalar ‘ 𝑊 )
3 asclf.r ( 𝜑𝑊 ∈ Ring )
4 asclf.l ( 𝜑𝑊 ∈ LMod )
5 asclf.k 𝐾 = ( Base ‘ 𝐹 )
6 asclf.b 𝐵 = ( Base ‘ 𝑊 )
7 4 adantr ( ( 𝜑𝑥𝐾 ) → 𝑊 ∈ LMod )
8 simpr ( ( 𝜑𝑥𝐾 ) → 𝑥𝐾 )
9 eqid ( 1r𝑊 ) = ( 1r𝑊 )
10 6 9 ringidcl ( 𝑊 ∈ Ring → ( 1r𝑊 ) ∈ 𝐵 )
11 3 10 syl ( 𝜑 → ( 1r𝑊 ) ∈ 𝐵 )
12 11 adantr ( ( 𝜑𝑥𝐾 ) → ( 1r𝑊 ) ∈ 𝐵 )
13 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
14 6 2 13 5 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝑥𝐾 ∧ ( 1r𝑊 ) ∈ 𝐵 ) → ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ∈ 𝐵 )
15 7 8 12 14 syl3anc ( ( 𝜑𝑥𝐾 ) → ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ∈ 𝐵 )
16 1 2 5 13 9 asclfval 𝐴 = ( 𝑥𝐾 ↦ ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
17 15 16 fmptd ( 𝜑𝐴 : 𝐾𝐵 )