| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclf.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 2 |
|
asclf.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
asclf.r |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 4 |
|
asclf.l |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 9 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 11 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 13 |
|
ringgrp |
⊢ ( 𝑊 ∈ Ring → 𝑊 ∈ Grp ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 15 |
1 2 3 4 5 6
|
asclf |
⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝐹 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑊 ∈ LMod ) |
| 17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) |
| 18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐹 ) ) |
| 19 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
| 20 |
6 19
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 21 |
3 20
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 23 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 24 |
6 8 2 23 5 7
|
lmodvsdir |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 25 |
16 17 18 22 24
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 26 |
5 7
|
grpcl |
⊢ ( ( 𝐹 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 27 |
26
|
3expb |
⊢ ( ( 𝐹 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 28 |
12 27
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 29 |
1 2 5 23 19
|
asclval |
⊢ ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 31 |
1 2 5 23 19
|
asclval |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 32 |
1 2 5 23 19
|
asclval |
⊢ ( 𝑦 ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ 𝑦 ) = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 33 |
31 32
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 35 |
25 30 34
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 36 |
5 6 7 8 12 14 15 35
|
isghmd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) ) |