| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclf.a |
|- A = ( algSc ` W ) |
| 2 |
|
asclf.f |
|- F = ( Scalar ` W ) |
| 3 |
|
asclf.r |
|- ( ph -> W e. Ring ) |
| 4 |
|
asclf.l |
|- ( ph -> W e. LMod ) |
| 5 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 7 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
| 8 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 9 |
2
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
| 10 |
4 9
|
syl |
|- ( ph -> F e. Ring ) |
| 11 |
|
ringgrp |
|- ( F e. Ring -> F e. Grp ) |
| 12 |
10 11
|
syl |
|- ( ph -> F e. Grp ) |
| 13 |
|
ringgrp |
|- ( W e. Ring -> W e. Grp ) |
| 14 |
3 13
|
syl |
|- ( ph -> W e. Grp ) |
| 15 |
1 2 3 4 5 6
|
asclf |
|- ( ph -> A : ( Base ` F ) --> ( Base ` W ) ) |
| 16 |
4
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> W e. LMod ) |
| 17 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> x e. ( Base ` F ) ) |
| 18 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> y e. ( Base ` F ) ) |
| 19 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
| 20 |
6 19
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
| 21 |
3 20
|
syl |
|- ( ph -> ( 1r ` W ) e. ( Base ` W ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( 1r ` W ) e. ( Base ` W ) ) |
| 23 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 24 |
6 8 2 23 5 7
|
lmodvsdir |
|- ( ( W e. LMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
| 25 |
16 17 18 22 24
|
syl13anc |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
| 26 |
5 7
|
grpcl |
|- ( ( F e. Grp /\ x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) |
| 27 |
26
|
3expb |
|- ( ( F e. Grp /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) |
| 28 |
12 27
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) |
| 29 |
1 2 5 23 19
|
asclval |
|- ( ( x ( +g ` F ) y ) e. ( Base ` F ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) ) |
| 31 |
1 2 5 23 19
|
asclval |
|- ( x e. ( Base ` F ) -> ( A ` x ) = ( x ( .s ` W ) ( 1r ` W ) ) ) |
| 32 |
1 2 5 23 19
|
asclval |
|- ( y e. ( Base ` F ) -> ( A ` y ) = ( y ( .s ` W ) ( 1r ` W ) ) ) |
| 33 |
31 32
|
oveqan12d |
|- ( ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( ( A ` x ) ( +g ` W ) ( A ` y ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( ( A ` x ) ( +g ` W ) ( A ` y ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
| 35 |
25 30 34
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( A ` x ) ( +g ` W ) ( A ` y ) ) ) |
| 36 |
5 6 7 8 12 14 15 35
|
isghmd |
|- ( ph -> A e. ( F GrpHom W ) ) |