Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclfval.a | |- A = ( algSc ` W ) |
|
| asclfval.f | |- F = ( Scalar ` W ) |
||
| asclfval.k | |- K = ( Base ` F ) |
||
| asclfval.s | |- .x. = ( .s ` W ) |
||
| asclfval.o | |- .1. = ( 1r ` W ) |
||
| Assertion | asclval | |- ( X e. K -> ( A ` X ) = ( X .x. .1. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclfval.a | |- A = ( algSc ` W ) |
|
| 2 | asclfval.f | |- F = ( Scalar ` W ) |
|
| 3 | asclfval.k | |- K = ( Base ` F ) |
|
| 4 | asclfval.s | |- .x. = ( .s ` W ) |
|
| 5 | asclfval.o | |- .1. = ( 1r ` W ) |
|
| 6 | oveq1 | |- ( x = X -> ( x .x. .1. ) = ( X .x. .1. ) ) |
|
| 7 | 1 2 3 4 5 | asclfval | |- A = ( x e. K |-> ( x .x. .1. ) ) |
| 8 | ovex | |- ( X .x. .1. ) e. _V |
|
| 9 | 6 7 8 | fvmpt | |- ( X e. K -> ( A ` X ) = ( X .x. .1. ) ) |