Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclfval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| asclfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| asclfval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| asclfval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| asclfval.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | ||
| Assertion | asclval | ⊢ ( 𝑋 ∈ 𝐾 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 · 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclfval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | asclfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | asclfval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 4 | asclfval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | asclfval.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 1 ) = ( 𝑋 · 1 ) ) | |
| 7 | 1 2 3 4 5 | asclfval | ⊢ 𝐴 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) |
| 8 | ovex | ⊢ ( 𝑋 · 1 ) ∈ V | |
| 9 | 6 7 8 | fvmpt | ⊢ ( 𝑋 ∈ 𝐾 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 · 1 ) ) |