Metamath Proof Explorer


Theorem asclfn

Description: Unconditional functionality of the algebra scalars function. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses asclfn.a 𝐴 = ( algSc ‘ 𝑊 )
asclfn.f 𝐹 = ( Scalar ‘ 𝑊 )
asclfn.k 𝐾 = ( Base ‘ 𝐹 )
Assertion asclfn 𝐴 Fn 𝐾

Proof

Step Hyp Ref Expression
1 asclfn.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclfn.f 𝐹 = ( Scalar ‘ 𝑊 )
3 asclfn.k 𝐾 = ( Base ‘ 𝐹 )
4 ovex ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ∈ V
5 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
6 eqid ( 1r𝑊 ) = ( 1r𝑊 )
7 1 2 3 5 6 asclfval 𝐴 = ( 𝑥𝐾 ↦ ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
8 4 7 fnmpti 𝐴 Fn 𝐾