Metamath Proof Explorer


Theorem asclfn

Description: Unconditional functionality of the algebra scalars function. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses asclfn.a A=algScW
asclfn.f F=ScalarW
asclfn.k K=BaseF
Assertion asclfn AFnK

Proof

Step Hyp Ref Expression
1 asclfn.a A=algScW
2 asclfn.f F=ScalarW
3 asclfn.k K=BaseF
4 ovex xW1WV
5 eqid W=W
6 eqid 1W=1W
7 1 2 3 5 6 asclfval A=xKxW1W
8 4 7 fnmpti AFnK