Metamath Proof Explorer
Description: Unconditional functionality of the algebra scalar lifting function.
(Contributed by Mario Carneiro, 9-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
asclfn.a |
|
|
|
asclfn.f |
|
|
|
asclfn.k |
|
|
Assertion |
asclfn |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclfn.a |
|
| 2 |
|
asclfn.f |
|
| 3 |
|
asclfn.k |
|
| 4 |
|
ovex |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
1 2 3 5 6
|
asclfval |
|
| 8 |
4 7
|
fnmpti |
|