Metamath Proof Explorer


Theorem asclfn

Description: Unconditional functionality of the algebra scalars function. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses asclfn.a
|- A = ( algSc ` W )
asclfn.f
|- F = ( Scalar ` W )
asclfn.k
|- K = ( Base ` F )
Assertion asclfn
|- A Fn K

Proof

Step Hyp Ref Expression
1 asclfn.a
 |-  A = ( algSc ` W )
2 asclfn.f
 |-  F = ( Scalar ` W )
3 asclfn.k
 |-  K = ( Base ` F )
4 ovex
 |-  ( x ( .s ` W ) ( 1r ` W ) ) e. _V
5 eqid
 |-  ( .s ` W ) = ( .s ` W )
6 eqid
 |-  ( 1r ` W ) = ( 1r ` W )
7 1 2 3 5 6 asclfval
 |-  A = ( x e. K |-> ( x ( .s ` W ) ( 1r ` W ) ) )
8 4 7 fnmpti
 |-  A Fn K