| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ascl0.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 2 |
|
ascl0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
ascl0.l |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 4 |
|
ascl0.r |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 5 |
2
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 8 |
6 7
|
grpidcl |
⊢ ( 𝐹 ∈ Grp → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 9 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
| 11 |
1 2 6 9 10
|
asclval |
⊢ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 12 |
3 5 8 11
|
4syl |
⊢ ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 14 |
13 10
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 15 |
4 14
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 17 |
13 2 9 7 16
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 18 |
3 15 17
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 19 |
12 18
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( 0g ‘ 𝑊 ) ) |