Metamath Proof Explorer


Theorem mat2pmatbas

Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 1-Aug-2019)

Ref Expression
Hypotheses mat2pmatbas.t T = N matToPolyMat R
mat2pmatbas.a A = N Mat R
mat2pmatbas.b B = Base A
mat2pmatbas.p P = Poly 1 R
mat2pmatbas.c C = N Mat P
Assertion mat2pmatbas N Fin R Ring M B T M Base C

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T = N matToPolyMat R
2 mat2pmatbas.a A = N Mat R
3 mat2pmatbas.b B = Base A
4 mat2pmatbas.p P = Poly 1 R
5 mat2pmatbas.c C = N Mat P
6 eqid algSc P = algSc P
7 1 2 3 4 6 mat2pmatval N Fin R Ring M B T M = x N , y N algSc P x M y
8 eqid Base P = Base P
9 eqid Base C = Base C
10 simp1 N Fin R Ring M B N Fin
11 4 fvexi P V
12 11 a1i N Fin R Ring M B P V
13 eqid Scalar P = Scalar P
14 4 ply1ring R Ring P Ring
15 14 3ad2ant2 N Fin R Ring M B P Ring
16 15 3ad2ant1 N Fin R Ring M B x N y N P Ring
17 4 ply1lmod R Ring P LMod
18 17 3ad2ant2 N Fin R Ring M B P LMod
19 18 3ad2ant1 N Fin R Ring M B x N y N P LMod
20 eqid Base Scalar P = Base Scalar P
21 6 13 16 19 20 8 asclf N Fin R Ring M B x N y N algSc P : Base Scalar P Base P
22 4 ply1sca R Ring R = Scalar P
23 22 fveq2d R Ring Base R = Base Scalar P
24 23 3ad2ant2 N Fin R Ring M B Base R = Base Scalar P
25 24 3ad2ant1 N Fin R Ring M B x N y N Base R = Base Scalar P
26 25 feq2d N Fin R Ring M B x N y N algSc P : Base R Base P algSc P : Base Scalar P Base P
27 21 26 mpbird N Fin R Ring M B x N y N algSc P : Base R Base P
28 simp2 N Fin R Ring M B x N y N x N
29 simp3 N Fin R Ring M B x N y N y N
30 3 eleq2i M B M Base A
31 30 biimpi M B M Base A
32 31 3ad2ant3 N Fin R Ring M B M Base A
33 32 3ad2ant1 N Fin R Ring M B x N y N M Base A
34 eqid Base R = Base R
35 2 34 matecl x N y N M Base A x M y Base R
36 28 29 33 35 syl3anc N Fin R Ring M B x N y N x M y Base R
37 27 36 ffvelrnd N Fin R Ring M B x N y N algSc P x M y Base P
38 5 8 9 10 12 37 matbas2d N Fin R Ring M B x N , y N algSc P x M y Base C
39 7 38 eqeltrd N Fin R Ring M B T M Base C