Metamath Proof Explorer


Theorem mat2pmatbas0

Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 27-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t T=NmatToPolyMatR
mat2pmatbas.a A=NMatR
mat2pmatbas.b B=BaseA
mat2pmatbas.p P=Poly1R
mat2pmatbas.c C=NMatP
mat2pmatbas0.h H=BaseC
Assertion mat2pmatbas0 NFinRRingMBTMH

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T=NmatToPolyMatR
2 mat2pmatbas.a A=NMatR
3 mat2pmatbas.b B=BaseA
4 mat2pmatbas.p P=Poly1R
5 mat2pmatbas.c C=NMatP
6 mat2pmatbas0.h H=BaseC
7 1 2 3 4 5 mat2pmatbas NFinRRingMBTMBaseC
8 7 6 eleqtrrdi NFinRRingMBTMH