Metamath Proof Explorer
Table of Contents - 12.2. Filters and filter bases
- Filter bases
- elmptrab
- elmptrab2
- isfbas
- fbasne0
- 0nelfb
- fbsspw
- fbelss
- fbdmn0
- isfbas2
- fbasssin
- fbssfi
- fbssint
- fbncp
- fbun
- fbfinnfr
- opnfbas
- trfbas2
- trfbas
- Filters
- cfil
- df-fil
- isfil
- filfbas
- 0nelfil
- fileln0
- filsspw
- filelss
- filss
- filin
- filtop
- isfil2
- isfildlem
- isfild
- filfi
- filinn0
- filintn0
- filn0
- infil
- snfil
- fbasweak
- snfbas
- fsubbas
- fbasfip
- fbunfip
- fgval
- elfg
- ssfg
- fgss
- fgss2
- fgfil
- elfilss
- filfinnfr
- fgcl
- fgabs
- neifil
- filunibas
- filunirn
- filconn
- fbasrn
- filuni
- trfil1
- trfil2
- trfil3
- trfilss
- fgtr
- trfg
- trnei
- cfinfil
- csdfil
- supfil
- zfbas
- uzrest
- uzfbas
- Ultrafilters
- cufil
- cufl
- df-ufil
- df-ufl
- isufil
- ufilfil
- ufilss
- ufilb
- ufilmax
- isufil2
- ufprim
- trufil
- filssufilg
- filssufil
- isufl
- ufli
- numufl
- fiufl
- acufl
- ssufl
- ufileu
- filufint
- uffix
- fixufil
- uffixfr
- uffix2
- uffixsn
- ufildom1
- uffinfix
- cfinufil
- ufinffr
- ufilen
- ufildr
- fin1aufil
- Filter limits
- cfm
- cflim
- cflf
- cfcls
- cfcf
- df-fm
- df-flim
- df-flf
- df-fcls
- df-fcf
- fmval
- fmfil
- fmf
- fmss
- elfm
- elfm2
- fmfg
- elfm3
- imaelfm
- rnelfmlem
- rnelfm
- fmfnfmlem1
- fmfnfmlem2
- fmfnfmlem3
- fmfnfmlem4
- fmfnfm
- fmufil
- fmid
- fmco
- ufldom
- flimval
- elflim2
- flimtop
- flimneiss
- flimnei
- flimelbas
- flimfil
- flimtopon
- elflim
- flimss2
- flimss1
- neiflim
- flimopn
- fbflim
- fbflim2
- flimclsi
- hausflimlem
- hausflimi
- hausflim
- flimcf
- flimrest
- flimclslem
- flimcls
- flimsncls
- hauspwpwf1
- hauspwpwdom
- flffval
- flfval
- flfnei
- flfneii
- isflf
- flfelbas
- flffbas
- flftg
- hausflf
- hausflf2
- cnpflfi
- cnpflf2
- cnpflf
- cnflf
- cnflf2
- flfcnp
- lmflf
- txflf
- flfcnp2
- fclsval
- isfcls
- fclsfil
- fclstop
- fclstopon
- isfcls2
- fclsopn
- fclsopni
- fclselbas
- fclsneii
- fclssscls
- fclsnei
- supnfcls
- fclsbas
- fclsss1
- fclsss2
- fclsrest
- fclscf
- flimfcls
- fclsfnflim
- flimfnfcls
- fclscmpi
- fclscmp
- uffclsflim
- ufilcmp
- fcfval
- isfcf
- fcfnei
- fcfelbas
- fcfneii
- flfssfcf
- uffcfflf
- cnpfcfi
- cnpfcf
- cnfcf
- flfcntr
- alexsublem
- alexsub
- alexsubb
- alexsubALTlem1
- alexsubALTlem2
- alexsubALTlem3
- alexsubALTlem4
- alexsubALT
- ptcmplem1
- ptcmplem2
- ptcmplem3
- ptcmplem4
- ptcmplem5
- ptcmpg
- ptcmp
- Extension by continuity
- ccnext
- df-cnext
- cnextval
- cnextfval
- cnextrel
- cnextfun
- cnextfvval
- cnextf
- cnextcn
- cnextfres1
- cnextfres
- Topological groups
- ctmd
- ctgp
- df-tmd
- df-tgp
- istmd
- tmdmnd
- tmdtps
- istgp
- tgpgrp
- tgptmd
- tgptps
- tmdtopon
- tgptopon
- tmdcn
- tgpcn
- tgpinv
- grpinvhmeo
- cnmpt1plusg
- cnmpt2plusg
- tmdcn2
- tgpsubcn
- istgp2
- tmdmulg
- tgpmulg
- tgpmulg2
- tmdgsum
- tmdgsum2
- oppgtmd
- oppgtgp
- distgp
- indistgp
- efmndtmd
- tmdlactcn
- tgplacthmeo
- submtmd
- subgtgp
- symgtgp
- subgntr
- opnsubg
- clssubg
- clsnsg
- cldsubg
- tgpconncompeqg
- tgpconncomp
- tgpconncompss
- ghmcnp
- snclseqg
- tgphaus
- tgpt1
- tgpt0
- qustgpopn
- qustgplem
- qustgp
- qustgphaus
- prdstmdd
- prdstgpd
- Infinite group sum on topological groups
- ctsu
- df-tsms
- tsmsfbas
- tsmslem1
- tsmsval2
- tsmsval
- tsmspropd
- eltsms
- tsmsi
- tsmscl
- haustsms
- haustsms2
- tsmscls
- tsmsgsum
- tsmsid
- haustsmsid
- tsms0
- tsmssubm
- tsmsres
- tsmsf1o
- tsmsmhm
- tsmsadd
- tsmsinv
- tsmssub
- tgptsmscls
- tgptsmscld
- tsmssplit
- tsmsxplem1
- tsmsxplem2
- tsmsxp
- Topological rings, fields, vector spaces
- ctrg
- ctdrg
- ctlm
- ctvc
- df-trg
- df-tdrg
- df-tlm
- df-tvc
- istrg
- trgtmd
- istdrg
- tdrgunit
- trgtgp
- trgtmd2
- trgtps
- trgring
- trggrp
- tdrgtrg
- tdrgdrng
- tdrgring
- tdrgtmd
- tdrgtps
- istdrg2
- mulrcn
- invrcn2
- invrcn
- cnmpt1mulr
- cnmpt2mulr
- dvrcn
- istlm
- vscacn
- tlmtmd
- tlmtps
- tlmlmod
- tlmtrg
- tlmscatps
- istvc
- tvctdrg
- cnmpt1vsca
- cnmpt2vsca
- tlmtgp
- tvctlm
- tvclmod
- tvclvec