Metamath Proof Explorer


Theorem ordtbas2

Description: Lemma for ordtbas . (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses ordtval.1 X=domR
ordtval.2 A=ranxXyX|¬yRx
ordtval.3 B=ranxXyX|¬xRy
ordtval.4 C=ranaX,bXyX|¬yRa¬bRy
Assertion ordtbas2 RTosetRelfiAB=ABC

Proof

Step Hyp Ref Expression
1 ordtval.1 X=domR
2 ordtval.2 A=ranxXyX|¬yRx
3 ordtval.3 B=ranxXyX|¬xRy
4 ordtval.4 C=ranaX,bXyX|¬yRa¬bRy
5 ssun1 AAB
6 ssun2 ABXAB
7 1 2 3 ordtuni RTosetRelX=XAB
8 dmexg RTosetReldomRV
9 1 8 eqeltrid RTosetRelXV
10 7 9 eqeltrrd RTosetRelXABV
11 uniexb XABVXABV
12 10 11 sylibr RTosetRelXABV
13 ssexg ABXABXABVABV
14 6 12 13 sylancr RTosetRelABV
15 ssexg AABABVAV
16 5 14 15 sylancr RTosetRelAV
17 ssun2 BAB
18 ssexg BABABVBV
19 17 14 18 sylancr RTosetRelBV
20 elfiun AVBVzfiABzfiAzfiBmfiAnfiBz=mn
21 16 19 20 syl2anc RTosetRelzfiABzfiAzfiBmfiAnfiBz=mn
22 1 2 ordtbaslem RTosetRelfiA=A
23 22 5 eqsstrdi RTosetRelfiAAB
24 ssun1 ABABC
25 23 24 sstrdi RTosetRelfiAABC
26 25 sseld RTosetRelzfiAzABC
27 cnvtsr RTosetRelR-1TosetRel
28 df-rn ranR=domR-1
29 eqid ranxranRyranR|¬yR-1x=ranxranRyranR|¬yR-1x
30 28 29 ordtbaslem R-1TosetRelfiranxranRyranR|¬yR-1x=ranxranRyranR|¬yR-1x
31 27 30 syl RTosetRelfiranxranRyranR|¬yR-1x=ranxranRyranR|¬yR-1x
32 tsrps RTosetRelRPosetRel
33 1 psrn RPosetRelX=ranR
34 32 33 syl RTosetRelX=ranR
35 vex yV
36 vex xV
37 35 36 brcnv yR-1xxRy
38 37 bicomi xRyyR-1x
39 38 notbii ¬xRy¬yR-1x
40 39 a1i RTosetRel¬xRy¬yR-1x
41 34 40 rabeqbidv RTosetRelyX|¬xRy=yranR|¬yR-1x
42 34 41 mpteq12dv RTosetRelxXyX|¬xRy=xranRyranR|¬yR-1x
43 42 rneqd RTosetRelranxXyX|¬xRy=ranxranRyranR|¬yR-1x
44 3 43 eqtrid RTosetRelB=ranxranRyranR|¬yR-1x
45 44 fveq2d RTosetRelfiB=firanxranRyranR|¬yR-1x
46 31 45 44 3eqtr4d RTosetRelfiB=B
47 46 17 eqsstrdi RTosetRelfiBAB
48 47 24 sstrdi RTosetRelfiBABC
49 48 sseld RTosetRelzfiBzABC
50 ssun2 CABC
51 22 2 eqtrdi RTosetRelfiA=ranxXyX|¬yRx
52 51 eleq2d RTosetRelmfiAmranxXyX|¬yRx
53 breq2 x=ayRxyRa
54 53 notbid x=a¬yRx¬yRa
55 54 rabbidv x=ayX|¬yRx=yX|¬yRa
56 55 cbvmptv xXyX|¬yRx=aXyX|¬yRa
57 56 elrnmpt mVmranxXyX|¬yRxaXm=yX|¬yRa
58 57 elv mranxXyX|¬yRxaXm=yX|¬yRa
59 52 58 bitrdi RTosetRelmfiAaXm=yX|¬yRa
60 46 3 eqtrdi RTosetRelfiB=ranxXyX|¬xRy
61 60 eleq2d RTosetRelnfiBnranxXyX|¬xRy
62 breq1 x=bxRybRy
63 62 notbid x=b¬xRy¬bRy
64 63 rabbidv x=byX|¬xRy=yX|¬bRy
65 64 cbvmptv xXyX|¬xRy=bXyX|¬bRy
66 65 elrnmpt nVnranxXyX|¬xRybXn=yX|¬bRy
67 66 elv nranxXyX|¬xRybXn=yX|¬bRy
68 61 67 bitrdi RTosetRelnfiBbXn=yX|¬bRy
69 59 68 anbi12d RTosetRelmfiAnfiBaXm=yX|¬yRabXn=yX|¬bRy
70 reeanv aXbXm=yX|¬yRan=yX|¬bRyaXm=yX|¬yRabXn=yX|¬bRy
71 ineq12 m=yX|¬yRan=yX|¬bRymn=yX|¬yRayX|¬bRy
72 inrab yX|¬yRayX|¬bRy=yX|¬yRa¬bRy
73 71 72 eqtrdi m=yX|¬yRan=yX|¬bRymn=yX|¬yRa¬bRy
74 73 reximi bXm=yX|¬yRan=yX|¬bRybXmn=yX|¬yRa¬bRy
75 74 reximi aXbXm=yX|¬yRan=yX|¬bRyaXbXmn=yX|¬yRa¬bRy
76 70 75 sylbir aXm=yX|¬yRabXn=yX|¬bRyaXbXmn=yX|¬yRa¬bRy
77 69 76 syl6bi RTosetRelmfiAnfiBaXbXmn=yX|¬yRa¬bRy
78 77 imp RTosetRelmfiAnfiBaXbXmn=yX|¬yRa¬bRy
79 vex mV
80 79 inex1 mnV
81 eqid aX,bXyX|¬yRa¬bRy=aX,bXyX|¬yRa¬bRy
82 81 elrnmpog mnVmnranaX,bXyX|¬yRa¬bRyaXbXmn=yX|¬yRa¬bRy
83 80 82 ax-mp mnranaX,bXyX|¬yRa¬bRyaXbXmn=yX|¬yRa¬bRy
84 78 83 sylibr RTosetRelmfiAnfiBmnranaX,bXyX|¬yRa¬bRy
85 84 4 eleqtrrdi RTosetRelmfiAnfiBmnC
86 50 85 sselid RTosetRelmfiAnfiBmnABC
87 eleq1 z=mnzABCmnABC
88 86 87 syl5ibrcom RTosetRelmfiAnfiBz=mnzABC
89 88 rexlimdvva RTosetRelmfiAnfiBz=mnzABC
90 26 49 89 3jaod RTosetRelzfiAzfiBmfiAnfiBz=mnzABC
91 21 90 sylbid RTosetRelzfiABzABC
92 91 ssrdv RTosetRelfiABABC
93 ssfii ABVABfiAB
94 14 93 syl RTosetRelABfiAB
95 94 adantr RTosetRelaXbXABfiAB
96 simprl RTosetRelaXbXaX
97 eqidd RTosetRelaXbXyX|¬yRa=yX|¬yRa
98 55 rspceeqv aXyX|¬yRa=yX|¬yRaxXyX|¬yRa=yX|¬yRx
99 96 97 98 syl2anc RTosetRelaXbXxXyX|¬yRa=yX|¬yRx
100 9 adantr RTosetRelaXbXXV
101 rabexg XVyX|¬yRaV
102 eqid xXyX|¬yRx=xXyX|¬yRx
103 102 elrnmpt yX|¬yRaVyX|¬yRaranxXyX|¬yRxxXyX|¬yRa=yX|¬yRx
104 100 101 103 3syl RTosetRelaXbXyX|¬yRaranxXyX|¬yRxxXyX|¬yRa=yX|¬yRx
105 99 104 mpbird RTosetRelaXbXyX|¬yRaranxXyX|¬yRx
106 105 2 eleqtrrdi RTosetRelaXbXyX|¬yRaA
107 5 106 sselid RTosetRelaXbXyX|¬yRaAB
108 95 107 sseldd RTosetRelaXbXyX|¬yRafiAB
109 simprr RTosetRelaXbXbX
110 eqidd RTosetRelaXbXyX|¬bRy=yX|¬bRy
111 64 rspceeqv bXyX|¬bRy=yX|¬bRyxXyX|¬bRy=yX|¬xRy
112 109 110 111 syl2anc RTosetRelaXbXxXyX|¬bRy=yX|¬xRy
113 rabexg XVyX|¬bRyV
114 eqid xXyX|¬xRy=xXyX|¬xRy
115 114 elrnmpt yX|¬bRyVyX|¬bRyranxXyX|¬xRyxXyX|¬bRy=yX|¬xRy
116 100 113 115 3syl RTosetRelaXbXyX|¬bRyranxXyX|¬xRyxXyX|¬bRy=yX|¬xRy
117 112 116 mpbird RTosetRelaXbXyX|¬bRyranxXyX|¬xRy
118 117 3 eleqtrrdi RTosetRelaXbXyX|¬bRyB
119 17 118 sselid RTosetRelaXbXyX|¬bRyAB
120 95 119 sseldd RTosetRelaXbXyX|¬bRyfiAB
121 fiin yX|¬yRafiAByX|¬bRyfiAByX|¬yRayX|¬bRyfiAB
122 108 120 121 syl2anc RTosetRelaXbXyX|¬yRayX|¬bRyfiAB
123 72 122 eqeltrrid RTosetRelaXbXyX|¬yRa¬bRyfiAB
124 123 ralrimivva RTosetRelaXbXyX|¬yRa¬bRyfiAB
125 81 fmpo aXbXyX|¬yRa¬bRyfiABaX,bXyX|¬yRa¬bRy:X×XfiAB
126 124 125 sylib RTosetRelaX,bXyX|¬yRa¬bRy:X×XfiAB
127 126 frnd RTosetRelranaX,bXyX|¬yRa¬bRyfiAB
128 4 127 eqsstrid RTosetRelCfiAB
129 94 128 unssd RTosetRelABCfiAB
130 92 129 eqssd RTosetRelfiAB=ABC